1 | /* |
---|
2 | Copyright (C) 1994-2001 Digitool, Inc |
---|
3 | This file is part of OpenMCL. |
---|
4 | |
---|
5 | OpenMCL is licensed under the terms of the Lisp Lesser GNU Public |
---|
6 | License , known as the LLGPL and distributed with OpenMCL as the |
---|
7 | file "LICENSE". The LLGPL consists of a preamble and the LGPL, |
---|
8 | which is distributed with OpenMCL as the file "LGPL". Where these |
---|
9 | conflict, the preamble takes precedence. |
---|
10 | |
---|
11 | OpenMCL is referenced in the preamble as the "LIBRARY." |
---|
12 | |
---|
13 | The LLGPL is also available online at |
---|
14 | http://opensource.franz.com/preamble.html |
---|
15 | */ |
---|
16 | |
---|
17 | #include "lisp.h" |
---|
18 | #include "lisp-exceptions.h" |
---|
19 | #include "lisp_globals.h" |
---|
20 | #include <ctype.h> |
---|
21 | #include <stdio.h> |
---|
22 | #include <stddef.h> |
---|
23 | #include <string.h> |
---|
24 | #include <stdarg.h> |
---|
25 | #include <errno.h> |
---|
26 | #include <stdio.h> |
---|
27 | #ifdef LINUX |
---|
28 | #include <strings.h> |
---|
29 | #include <sys/mman.h> |
---|
30 | #include <fpu_control.h> |
---|
31 | #include <linux/prctl.h> |
---|
32 | #endif |
---|
33 | |
---|
34 | #ifdef DARWIN |
---|
35 | #include <sys/mman.h> |
---|
36 | #define _FPU_RESERVED 0xffffff00 |
---|
37 | #ifndef SA_NODEFER |
---|
38 | #define SA_NODEFER 0 |
---|
39 | #endif |
---|
40 | |
---|
41 | /* a distinguished UUO at a distinguished address */ |
---|
42 | extern void pseudo_sigreturn(ExceptionInformationPowerPC *); |
---|
43 | #endif |
---|
44 | |
---|
45 | |
---|
46 | #include "Threads.h" |
---|
47 | |
---|
48 | #define MSR_FE0_MASK (((unsigned)0x80000000)>>20) |
---|
49 | #define MSR_FE1_MASK (((unsigned)0x80000000)>>23) |
---|
50 | #define MSR_FE0_FE1_MASK (MSR_FE0_MASK|MSR_FE1_MASK) |
---|
51 | extern void enable_fp_exceptions(void); |
---|
52 | extern void disable_fp_exceptions(void); |
---|
53 | |
---|
54 | #ifdef LINUX |
---|
55 | /* Some relatively recent kernels support this interface. |
---|
56 | If this prctl isn't supported, assume that we're always |
---|
57 | running with excptions enabled and "precise". |
---|
58 | */ |
---|
59 | #ifndef PR_SET_FPEXC |
---|
60 | #define PR_SET_FPEXC 12 |
---|
61 | #endif |
---|
62 | #ifndef PR_FP_EXC_DISABLED |
---|
63 | #define PR_FP_EXC_DISABLED 0 |
---|
64 | #endif |
---|
65 | #ifndef PR_FP_EXC_PRECISE |
---|
66 | #define PR_FP_EXC_PRECISE 3 |
---|
67 | #endif |
---|
68 | |
---|
69 | void |
---|
70 | enable_fp_exceptions() |
---|
71 | { |
---|
72 | prctl(PR_SET_FPEXC, PR_FP_EXC_PRECISE); |
---|
73 | } |
---|
74 | |
---|
75 | void |
---|
76 | disable_fp_exceptions() |
---|
77 | { |
---|
78 | prctl(PR_SET_FPEXC, PR_FP_EXC_DISABLED); |
---|
79 | } |
---|
80 | |
---|
81 | #endif |
---|
82 | |
---|
83 | /* |
---|
84 | Handle exceptions. |
---|
85 | |
---|
86 | */ |
---|
87 | |
---|
88 | extern LispObj lisp_nil; |
---|
89 | |
---|
90 | extern unsigned lisp_heap_gc_threshold; |
---|
91 | extern Boolean grow_dynamic_area(unsigned); |
---|
92 | |
---|
93 | |
---|
94 | /* top 6 bits will be zero, subtag will be subtag_code_vector */ |
---|
95 | #define CV_HDR_MASK (OP_MASK | subtagmask) |
---|
96 | #define CV_HDR_VALUE subtag_code_vector |
---|
97 | #define codevec_hdr_p(value) (((value) & CV_HDR_MASK) == CV_HDR_VALUE) |
---|
98 | |
---|
99 | |
---|
100 | |
---|
101 | void |
---|
102 | allocation_failure(Boolean pointerp, unsigned size) |
---|
103 | { |
---|
104 | char buf[64]; |
---|
105 | sprintf(buf, "Can't allocate %s of size %d bytes.", pointerp ? "pointer" : "handle", size); |
---|
106 | Fatal(": Kernel memory allocation failure. ", buf); |
---|
107 | } |
---|
108 | |
---|
109 | void |
---|
110 | fatal_oserr(StringPtr param, OSErr err) |
---|
111 | { |
---|
112 | char buf[64]; |
---|
113 | sprintf(buf," - operating system error %d.", err); |
---|
114 | Fatal(param, buf); |
---|
115 | } |
---|
116 | |
---|
117 | |
---|
118 | Ptr |
---|
119 | allocate(unsigned size) |
---|
120 | { |
---|
121 | return (Ptr) malloc(size); |
---|
122 | } |
---|
123 | |
---|
124 | void |
---|
125 | deallocate(Ptr p) |
---|
126 | { |
---|
127 | free((void *)p); |
---|
128 | } |
---|
129 | |
---|
130 | Ptr |
---|
131 | zalloc(unsigned size) |
---|
132 | { |
---|
133 | Ptr p = allocate(size); |
---|
134 | if (p != NULL) { |
---|
135 | memset(p, 0, size); |
---|
136 | } |
---|
137 | return p; |
---|
138 | } |
---|
139 | |
---|
140 | int |
---|
141 | ProtectMemory(LogicalAddress addr, int nbytes) |
---|
142 | { |
---|
143 | int status = mprotect(addr, nbytes, PROT_READ | PROT_EXEC); |
---|
144 | |
---|
145 | if (status) { |
---|
146 | status = errno; |
---|
147 | Bug(NULL, "couldn't protect %d bytes at %x, errno = %d", nbytes, addr, status); |
---|
148 | } |
---|
149 | return status; |
---|
150 | } |
---|
151 | |
---|
152 | int |
---|
153 | UnProtectMemory(LogicalAddress addr, int nbytes) |
---|
154 | { |
---|
155 | return mprotect(addr, nbytes, PROT_READ|PROT_WRITE|PROT_EXEC); |
---|
156 | } |
---|
157 | |
---|
158 | void |
---|
159 | unprotect_area(protected_area_ptr p) |
---|
160 | { |
---|
161 | BytePtr start = p->start; |
---|
162 | unsigned nprot = p->nprot; |
---|
163 | |
---|
164 | if (nprot) { |
---|
165 | UnProtectMemory(start, nprot); |
---|
166 | p->nprot = 0; |
---|
167 | } |
---|
168 | } |
---|
169 | |
---|
170 | |
---|
171 | |
---|
172 | int |
---|
173 | page_size = 4096; |
---|
174 | |
---|
175 | extern void |
---|
176 | zero_cache_lines(BytePtr, size_t, size_t); |
---|
177 | |
---|
178 | void |
---|
179 | zero_page(BytePtr start) |
---|
180 | { |
---|
181 | zero_cache_lines(start, (page_size/cache_block_size), cache_block_size); |
---|
182 | } |
---|
183 | |
---|
184 | |
---|
185 | |
---|
186 | /* |
---|
187 | If the PC is pointing to an allocation trap, the previous instruction |
---|
188 | must have decremented allocptr. Return the non-zero amount by which |
---|
189 | allocptr was decremented. |
---|
190 | */ |
---|
191 | int |
---|
192 | allocptr_displacement(ExceptionInformation *xp) |
---|
193 | { |
---|
194 | pc program_counter = xpPC(xp); |
---|
195 | opcode instr = *program_counter, prev_instr = *(program_counter-1); |
---|
196 | |
---|
197 | if (instr == ALLOC_TRAP_INSTRUCTION) { |
---|
198 | if (match_instr(prev_instr, |
---|
199 | XO_MASK | RT_MASK | RB_MASK, |
---|
200 | XO(major_opcode_X31,minor_opcode_SUBF, 0, 0) | |
---|
201 | RT(allocptr) | |
---|
202 | RB(allocptr))) { |
---|
203 | return ((int) xpGPR(xp, RA_field(prev_instr))); |
---|
204 | } |
---|
205 | if (match_instr(prev_instr, |
---|
206 | OP_MASK | RT_MASK | RA_MASK, |
---|
207 | OP(major_opcode_ADDI) | |
---|
208 | RT(allocptr) | |
---|
209 | RA(allocptr))) { |
---|
210 | return (int) -((short) prev_instr); |
---|
211 | } |
---|
212 | Bug(xp, "Can't determine allocation displacement"); |
---|
213 | } |
---|
214 | return 0; |
---|
215 | } |
---|
216 | |
---|
217 | |
---|
218 | /* |
---|
219 | A cons cell's been successfully allocated, but the allocptr's |
---|
220 | still tagged (as fulltag_cons, of course.) Emulate any instructions |
---|
221 | that might follow the allocation (stores to the car or cdr, an |
---|
222 | assignment to the "result" gpr) that take place while the allocptr's |
---|
223 | tag is non-zero, advancing over each such instruction. When we're |
---|
224 | done, the cons cell will be allocated and initialized, the result |
---|
225 | register will point to it, the allocptr will be untagged, and |
---|
226 | the PC will point past the instruction that clears the allocptr's |
---|
227 | tag. |
---|
228 | */ |
---|
229 | void |
---|
230 | finish_allocating_cons(ExceptionInformation *xp) |
---|
231 | { |
---|
232 | pc program_counter = xpPC(xp); |
---|
233 | opcode instr; |
---|
234 | LispObj cur_allocptr = xpGPR(xp, allocptr); |
---|
235 | cons *c = (cons *)ptr_from_lispobj(untag(cur_allocptr)); |
---|
236 | int target_reg; |
---|
237 | |
---|
238 | while (1) { |
---|
239 | instr = *program_counter++; |
---|
240 | |
---|
241 | if (instr == UNTAG_ALLOCPTR_INSTRUCTION) { |
---|
242 | xpGPR(xp, allocptr) = untag(cur_allocptr); |
---|
243 | xpPC(xp) = program_counter; |
---|
244 | return; |
---|
245 | } |
---|
246 | |
---|
247 | switch (instr & STORE_CXR_ALLOCPTR_MASK) { |
---|
248 | case STORE_CAR_ALLOCPTR_INSTRUCTION: |
---|
249 | c->car = xpGPR(xp,RT_field(instr)); |
---|
250 | break; |
---|
251 | case STORE_CDR_ALLOCPTR_INSTRUCTION: |
---|
252 | c->cdr = xpGPR(xp,RT_field(instr)); |
---|
253 | break; |
---|
254 | default: |
---|
255 | /* Assume that this is an assignment: {rt/ra} <- allocptr. |
---|
256 | There are several equivalent instruction forms |
---|
257 | that might have that effect; just assign to target here. |
---|
258 | */ |
---|
259 | if (major_opcode_p(instr,major_opcode_X31)) { |
---|
260 | target_reg = RA_field(instr); |
---|
261 | } else { |
---|
262 | target_reg = RT_field(instr); |
---|
263 | } |
---|
264 | xpGPR(xp,target_reg) = cur_allocptr; |
---|
265 | break; |
---|
266 | } |
---|
267 | } |
---|
268 | } |
---|
269 | |
---|
270 | /* |
---|
271 | We were interrupted in the process of allocating a uvector; we |
---|
272 | survived the allocation trap, and allocptr is tagged as fulltag_misc. |
---|
273 | Emulate any instructions which store a header into the uvector, |
---|
274 | assign the value of allocptr to some other register, and clear |
---|
275 | allocptr's tag. Don't expect/allow any other instructions in |
---|
276 | this environment. |
---|
277 | */ |
---|
278 | void |
---|
279 | finish_allocating_uvector(ExceptionInformation *xp) |
---|
280 | { |
---|
281 | pc program_counter = xpPC(xp); |
---|
282 | opcode instr; |
---|
283 | LispObj cur_allocptr = xpGPR(xp, allocptr); |
---|
284 | int target_reg; |
---|
285 | |
---|
286 | while (1) { |
---|
287 | instr = *program_counter++; |
---|
288 | if (instr == UNTAG_ALLOCPTR_INSTRUCTION) { |
---|
289 | xpGPR(xp, allocptr) = untag(cur_allocptr); |
---|
290 | xpPC(xp) = program_counter; |
---|
291 | return; |
---|
292 | } |
---|
293 | if ((instr & STORE_HEADER_ALLOCPTR_MASK) == |
---|
294 | STORE_HEADER_ALLOCPTR_INSTRUCTION) { |
---|
295 | header_of(cur_allocptr) = xpGPR(xp, RT_field(instr)); |
---|
296 | } else { |
---|
297 | /* assume that this is an assignment */ |
---|
298 | |
---|
299 | if (major_opcode_p(instr,major_opcode_X31)) { |
---|
300 | target_reg = RA_field(instr); |
---|
301 | } else { |
---|
302 | target_reg = RT_field(instr); |
---|
303 | } |
---|
304 | xpGPR(xp,target_reg) = cur_allocptr; |
---|
305 | } |
---|
306 | } |
---|
307 | } |
---|
308 | |
---|
309 | |
---|
310 | Boolean free_segments_zero_filled_by_OS = true; |
---|
311 | |
---|
312 | /* |
---|
313 | This doesn't GC; it returns true if it made enough room, false |
---|
314 | otherwise. |
---|
315 | If "extend" is true, it can try to extend the dynamic area to |
---|
316 | satisfy the request. |
---|
317 | */ |
---|
318 | |
---|
319 | Boolean |
---|
320 | new_heap_segment(ExceptionInformation *xp, unsigned need, Boolean extend, TCR *tcr) |
---|
321 | { |
---|
322 | area *a; |
---|
323 | unsigned newlimit, oldlimit; |
---|
324 | |
---|
325 | |
---|
326 | a = active_dynamic_area; |
---|
327 | oldlimit = (unsigned) a->active; |
---|
328 | newlimit = (align_to_power_of_2(oldlimit, log2_heap_segment_size) + |
---|
329 | align_to_power_of_2(need, log2_heap_segment_size)); |
---|
330 | if (newlimit > (unsigned) (a->high)) { |
---|
331 | if (extend) { |
---|
332 | resize_dynamic_heap(a->active, (newlimit-oldlimit)+lisp_heap_gc_threshold); |
---|
333 | } else { |
---|
334 | return false; |
---|
335 | } |
---|
336 | } |
---|
337 | a->active = (BytePtr) newlimit; |
---|
338 | tcr->last_allocptr = (void *)newlimit; |
---|
339 | xpGPR(xp,allocptr) = (LispObj) newlimit; |
---|
340 | xpGPR(xp,allocbase) = (LispObj) oldlimit; |
---|
341 | |
---|
342 | if (!free_segments_zero_filled_by_OS) { |
---|
343 | BytePtr |
---|
344 | pageptr = (BytePtr)align_to_power_of_2(oldlimit,log2_heap_segment_size); |
---|
345 | unsigned i, npages = (newlimit-(unsigned)pageptr) >> 12; |
---|
346 | |
---|
347 | for (i = 0; i < npages; i++, pageptr += page_size) { |
---|
348 | zero_page(pageptr); |
---|
349 | } |
---|
350 | } |
---|
351 | return true; |
---|
352 | } |
---|
353 | |
---|
354 | Boolean |
---|
355 | allocate_object(ExceptionInformation *xp, |
---|
356 | unsigned bytes_needed, |
---|
357 | int disp_from_allocptr, |
---|
358 | TCR *tcr) |
---|
359 | { |
---|
360 | area *a = active_dynamic_area; |
---|
361 | |
---|
362 | /* Maybe do an EGC */ |
---|
363 | if (a->older && lisp_global(OLDEST_EPHEMERAL)) { |
---|
364 | if (((a->active)-(a->low)) >= a->threshold) { |
---|
365 | gc_from_xp(xp); |
---|
366 | } |
---|
367 | } |
---|
368 | |
---|
369 | /* Life is pretty simple if we can simply grab a segment |
---|
370 | without extending the heap. |
---|
371 | */ |
---|
372 | if (new_heap_segment(xp, bytes_needed, false, tcr)) { |
---|
373 | xpGPR(xp, allocptr) += disp_from_allocptr; |
---|
374 | return true; |
---|
375 | } |
---|
376 | |
---|
377 | /* It doesn't make sense to try a full GC if the object |
---|
378 | we're trying to allocate is larger than everything |
---|
379 | allocated so far. |
---|
380 | */ |
---|
381 | if ((lisp_global(HEAP_END)-lisp_global(HEAP_START)) > bytes_needed) { |
---|
382 | untenure_from_area(tenured_area); /* force a full GC */ |
---|
383 | unprotect_area(oldspace_protected_area); |
---|
384 | gc_from_xp(xp); |
---|
385 | } |
---|
386 | |
---|
387 | /* Try again, growing the heap if necessary */ |
---|
388 | if (new_heap_segment(xp, bytes_needed, true, tcr)) { |
---|
389 | xpGPR(xp, allocptr) += disp_from_allocptr; |
---|
390 | return true; |
---|
391 | } |
---|
392 | |
---|
393 | return false; |
---|
394 | } |
---|
395 | |
---|
396 | #ifndef XNOMEM |
---|
397 | #define XNOMEM 10 |
---|
398 | #endif |
---|
399 | |
---|
400 | void |
---|
401 | update_bytes_allocated(TCR* tcr, void *cur_allocptr) |
---|
402 | { |
---|
403 | BytePtr |
---|
404 | last = (BytePtr) tcr->last_allocptr, |
---|
405 | current = (BytePtr) cur_allocptr; |
---|
406 | if (last && (cur_allocptr != ((void *)VOID_ALLOCPTR))) { |
---|
407 | tcr->bytes_allocated += last-current; |
---|
408 | } |
---|
409 | tcr->last_allocptr = 0; |
---|
410 | } |
---|
411 | |
---|
412 | OSStatus |
---|
413 | handle_alloc_trap(ExceptionInformation *xp, TCR *tcr) |
---|
414 | { |
---|
415 | pc program_counter; |
---|
416 | unsigned cur_allocptr, bytes_needed = 0; |
---|
417 | opcode prev_instr; |
---|
418 | int disp = 0, allocptr_tag; |
---|
419 | |
---|
420 | cur_allocptr = xpGPR(xp,allocptr); |
---|
421 | program_counter = xpPC(xp); |
---|
422 | prev_instr = *(program_counter-1); |
---|
423 | allocptr_tag = fulltag_of(cur_allocptr); |
---|
424 | |
---|
425 | switch (allocptr_tag) { |
---|
426 | case fulltag_cons: |
---|
427 | bytes_needed = sizeof(cons); |
---|
428 | disp = -sizeof(cons) + fulltag_cons; |
---|
429 | break; |
---|
430 | |
---|
431 | case fulltag_even_fixnum: |
---|
432 | case fulltag_odd_fixnum: |
---|
433 | break; |
---|
434 | |
---|
435 | case fulltag_misc: |
---|
436 | if (match_instr(prev_instr, |
---|
437 | XO_MASK | RT_MASK | RB_MASK, |
---|
438 | XO(major_opcode_X31,minor_opcode_SUBF, 0, 0) | |
---|
439 | RT(allocptr) | |
---|
440 | RB(allocptr))) { |
---|
441 | disp = -((int) xpGPR(xp, RA_field(prev_instr))); |
---|
442 | } else if (match_instr(prev_instr, |
---|
443 | OP_MASK | RT_MASK | RA_MASK, |
---|
444 | OP(major_opcode_ADDI) | |
---|
445 | RT(allocptr) | |
---|
446 | RA(allocptr))) { |
---|
447 | disp = (int) ((short) prev_instr); |
---|
448 | } |
---|
449 | if (disp) { |
---|
450 | bytes_needed = (-disp) + fulltag_misc; |
---|
451 | break; |
---|
452 | } |
---|
453 | /* else fall thru */ |
---|
454 | default: |
---|
455 | return -1; |
---|
456 | } |
---|
457 | |
---|
458 | if (bytes_needed) { |
---|
459 | update_bytes_allocated(tcr,((BytePtr)(cur_allocptr-disp))); |
---|
460 | if (allocate_object(xp, bytes_needed, disp, tcr)) { |
---|
461 | adjust_exception_pc(xp,4); |
---|
462 | return 0; |
---|
463 | } |
---|
464 | /* Couldn't allocate the object. If it's smaller than some arbitrary |
---|
465 | size (say 128K bytes), signal a "chronically out-of-memory" condition; |
---|
466 | else signal a "allocation request failed" condition. |
---|
467 | */ |
---|
468 | handle_error(xp, bytes_needed < (128<<10) ? XNOMEM : error_alloc_failed, 0, 0, (unsigned) xpPC(xp)); |
---|
469 | return -1; |
---|
470 | } |
---|
471 | return -1; |
---|
472 | } |
---|
473 | |
---|
474 | OSStatus |
---|
475 | handle_gc_trap(ExceptionInformation *xp, TCR *tcr) |
---|
476 | { |
---|
477 | LispObj |
---|
478 | selector = xpGPR(xp,imm0), |
---|
479 | arg = xpGPR(xp,imm1); |
---|
480 | area *a = active_dynamic_area; |
---|
481 | Boolean egc_was_enabled = (a->older != NULL); |
---|
482 | |
---|
483 | |
---|
484 | switch (selector) { |
---|
485 | case GC_TRAP_FUNCTION_EGC_CONTROL: |
---|
486 | egc_control(arg != 0, a->active); |
---|
487 | xpGPR(xp,arg_z) = lisp_nil + (egc_was_enabled ? t_offset : 0); |
---|
488 | break; |
---|
489 | |
---|
490 | case GC_TRAP_FUNCTION_CONFIGURE_EGC: |
---|
491 | a->threshold = unbox_fixnum(xpGPR(xp, arg_x)); |
---|
492 | g1_area->threshold = unbox_fixnum(xpGPR(xp, arg_y)); |
---|
493 | g2_area->threshold = unbox_fixnum(xpGPR(xp, arg_z)); |
---|
494 | xpGPR(xp,arg_z) = lisp_nil+t_offset; |
---|
495 | break; |
---|
496 | |
---|
497 | case GC_TRAP_FUNCTION_SET_LISP_HEAP_THRESHOLD: |
---|
498 | if (((int) arg) > 0) { |
---|
499 | lisp_heap_gc_threshold = |
---|
500 | align_to_power_of_2((arg-1) + |
---|
501 | (heap_segment_size - 1), |
---|
502 | log2_heap_segment_size); |
---|
503 | } |
---|
504 | /* fall through */ |
---|
505 | case GC_TRAP_FUNCTION_GET_LISP_HEAP_THRESHOLD: |
---|
506 | xpGPR(xp, arg_z) = box_fixnum(lisp_heap_gc_threshold); |
---|
507 | break; |
---|
508 | |
---|
509 | case GC_TRAP_FUNCTION_USE_LISP_HEAP_THRESHOLD: |
---|
510 | /* Try to put the current threshold in effect. This may |
---|
511 | need to disable/reenable the EGC. */ |
---|
512 | untenure_from_area(tenured_area); |
---|
513 | resize_dynamic_heap(a->active,lisp_heap_gc_threshold); |
---|
514 | if (egc_was_enabled) { |
---|
515 | if ((a->high - a->active) >= a->threshold) { |
---|
516 | tenure_to_area(tenured_area); |
---|
517 | } |
---|
518 | } |
---|
519 | xpGPR(xp, arg_z) = box_fixnum(lisp_heap_gc_threshold); |
---|
520 | break; |
---|
521 | |
---|
522 | default: |
---|
523 | update_bytes_allocated(tcr, (void *) ptr_from_lispobj(xpGPR(xp, allocptr))); |
---|
524 | if (egc_was_enabled) { |
---|
525 | egc_control(false, (BytePtr) a->active); |
---|
526 | } |
---|
527 | gc_from_xp(xp); |
---|
528 | if (selector > GC_TRAP_FUNCTION_GC) { |
---|
529 | if (selector & GC_TRAP_FUNCTION_IMPURIFY) { |
---|
530 | impurify_from_xp(xp); |
---|
531 | /* nrs_GC_EVENT_STATUS_BITS.vcell |= gc_integrity_check_bit; */ |
---|
532 | gc_from_xp(xp); |
---|
533 | } |
---|
534 | if (selector & GC_TRAP_FUNCTION_PURIFY) { |
---|
535 | purify_from_xp(xp); |
---|
536 | gc_from_xp(xp); |
---|
537 | } |
---|
538 | if (selector & GC_TRAP_FUNCTION_SAVE_APPLICATION) { |
---|
539 | OSErr err; |
---|
540 | extern OSErr save_application(unsigned, Boolean); |
---|
541 | TCR *tcr = (TCR *)ptr_from_lispobj(xpGPR(xp, rcontext)); |
---|
542 | area *vsarea = tcr->vs_area; |
---|
543 | |
---|
544 | nrs_TOPLFUNC.vcell = *((LispObj *)(vsarea->high)-1); |
---|
545 | err = save_application(arg, (selector == GC_TRAP_FLAG_COMPRESS)); |
---|
546 | if (err == noErr) { |
---|
547 | exit(0); |
---|
548 | } |
---|
549 | fatal_oserr(": save_application", err); |
---|
550 | } |
---|
551 | } |
---|
552 | |
---|
553 | if (egc_was_enabled) { |
---|
554 | egc_control(true, NULL); |
---|
555 | } |
---|
556 | break; |
---|
557 | |
---|
558 | } |
---|
559 | |
---|
560 | adjust_exception_pc(xp,4); |
---|
561 | return 0; |
---|
562 | } |
---|
563 | |
---|
564 | |
---|
565 | protected_area_ptr |
---|
566 | AllProtectedAreas = NULL; |
---|
567 | |
---|
568 | /* |
---|
569 | This does a linear search. Areas aren't created all that often; |
---|
570 | if there get to be very many of them, some sort of tree search |
---|
571 | might be justified. |
---|
572 | */ |
---|
573 | |
---|
574 | protected_area_ptr |
---|
575 | find_protected_area(BytePtr addr) |
---|
576 | { |
---|
577 | protected_area* p; |
---|
578 | |
---|
579 | for(p = AllProtectedAreas; p; p=p->next) { |
---|
580 | if ((p->start <= addr) && (p->end > addr)) { |
---|
581 | return p; |
---|
582 | } |
---|
583 | } |
---|
584 | return NULL; |
---|
585 | } |
---|
586 | |
---|
587 | void |
---|
588 | signal_stack_soft_overflow(ExceptionInformation *xp, unsigned reg) |
---|
589 | { |
---|
590 | /* The cstack just overflowed. Force the current thread's |
---|
591 | control stack to do so until all stacks are well under their overflow |
---|
592 | limits. |
---|
593 | */ |
---|
594 | |
---|
595 | #if 0 |
---|
596 | lisp_global(CS_OVERFLOW_LIMIT) = CS_OVERFLOW_FORCE_LIMIT; /* force unsigned traps to fail */ |
---|
597 | #endif |
---|
598 | handle_error(xp, error_stack_overflow, reg, 0, (unsigned) xpPC(xp)); |
---|
599 | } |
---|
600 | |
---|
601 | /* |
---|
602 | Lower (move toward 0) the "end" of the soft protected area associated |
---|
603 | with a by a page, if we can. |
---|
604 | */ |
---|
605 | |
---|
606 | void |
---|
607 | adjust_soft_protection_limit(area *a) |
---|
608 | { |
---|
609 | char *proposed_new_soft_limit = a->softlimit - 4096; |
---|
610 | protected_area_ptr p = a->softprot; |
---|
611 | |
---|
612 | if (proposed_new_soft_limit >= (p->start+16384)) { |
---|
613 | p->end = proposed_new_soft_limit; |
---|
614 | p->protsize = p->end-p->start; |
---|
615 | a->softlimit = proposed_new_soft_limit; |
---|
616 | } |
---|
617 | protect_area(p); |
---|
618 | } |
---|
619 | |
---|
620 | void |
---|
621 | restore_soft_stack_limit(unsigned stkreg) |
---|
622 | { |
---|
623 | area *a; |
---|
624 | TCR *tcr = get_tcr(true); |
---|
625 | |
---|
626 | switch (stkreg) { |
---|
627 | case sp: |
---|
628 | a = tcr->cs_area; |
---|
629 | if ((a->softlimit - 4096) > (a->hardlimit + 16384)) { |
---|
630 | a->softlimit -= 4096; |
---|
631 | } |
---|
632 | tcr->cs_limit = (LispObj)ptr_to_lispobj(a->softlimit); |
---|
633 | break; |
---|
634 | case vsp: |
---|
635 | a = tcr->vs_area; |
---|
636 | adjust_soft_protection_limit(a); |
---|
637 | break; |
---|
638 | case tsp: |
---|
639 | a = tcr->ts_area; |
---|
640 | adjust_soft_protection_limit(a); |
---|
641 | } |
---|
642 | } |
---|
643 | |
---|
644 | /* Maybe this'll work someday. We may have to do something to |
---|
645 | make the thread look like it's not handling an exception */ |
---|
646 | void |
---|
647 | reset_lisp_process(ExceptionInformation *xp) |
---|
648 | { |
---|
649 | TCR *tcr = (TCR *)ptr_from_lispobj(xpGPR(xp,rcontext)); |
---|
650 | catch_frame *last_catch = (catch_frame *) ptr_from_lispobj(untag(tcr->catch_top)); |
---|
651 | |
---|
652 | tcr->save_allocptr = (void *) ptr_from_lispobj(xpGPR(xp, allocptr)); |
---|
653 | tcr->save_allocbase = (void *) ptr_from_lispobj(xpGPR(xp, allocbase)); |
---|
654 | |
---|
655 | tcr->save_vsp = (LispObj *) ptr_from_lispobj(((lisp_frame *)ptr_from_lispobj(last_catch->csp))->savevsp); |
---|
656 | tcr->save_tsp = (LispObj *) ptr_from_lispobj((LispObj) ptr_to_lispobj(last_catch)) - (2*node_size); /* account for TSP header */ |
---|
657 | |
---|
658 | start_lisp(tcr, 1); |
---|
659 | } |
---|
660 | |
---|
661 | void |
---|
662 | zero_last_page(BytePtr newfree) |
---|
663 | { |
---|
664 | BytePtr base = (BytePtr)truncate_to_power_of_2(newfree,12); |
---|
665 | if (base != newfree) { |
---|
666 | memset(newfree, 0, base+4096-newfree); |
---|
667 | } |
---|
668 | } |
---|
669 | |
---|
670 | /* |
---|
671 | Grow or shrink the dynamic area. Or maybe not. |
---|
672 | Whether or not the end of (mapped space in) the heap changes, |
---|
673 | ensure that everything between the freeptr and the heap end |
---|
674 | is mapped and read/write. (It'll incidentally be zeroed.) |
---|
675 | */ |
---|
676 | void |
---|
677 | resize_dynamic_heap(BytePtr newfree, |
---|
678 | unsigned free_space_size) |
---|
679 | { |
---|
680 | unsigned protbytes; |
---|
681 | area *a = active_dynamic_area; |
---|
682 | BytePtr newlimit, protptr; |
---|
683 | |
---|
684 | if (free_space_size) { |
---|
685 | BytePtr lowptr = a->active; |
---|
686 | newlimit = lowptr + align_to_power_of_2(newfree-lowptr+free_space_size, |
---|
687 | log2_heap_segment_size); |
---|
688 | if (newlimit > a->high) { |
---|
689 | grow_dynamic_area(newlimit-a->high); |
---|
690 | } else if ((newlimit + free_space_size) < a->high) { |
---|
691 | shrink_dynamic_area(a->high-newlimit); |
---|
692 | } |
---|
693 | } |
---|
694 | |
---|
695 | protbytes = (((a->high)-newfree)&~(heap_segment_size-1)); |
---|
696 | protptr = a->high-protbytes; |
---|
697 | |
---|
698 | free_segments_zero_filled_by_OS = false; |
---|
699 | if (!( nrs_GC_EVENT_STATUS_BITS.vcell & gc_retain_pages_bit)) { |
---|
700 | commit_pages(protptr, protbytes); |
---|
701 | free_segments_zero_filled_by_OS = true; |
---|
702 | } |
---|
703 | protbytes = (protptr-newfree); |
---|
704 | |
---|
705 | while (protbytes >= page_size) { |
---|
706 | protptr -= page_size; |
---|
707 | protbytes -= page_size; |
---|
708 | zero_page(protptr); |
---|
709 | } |
---|
710 | /* memset(newfree,0,protbytes); */ |
---|
711 | } |
---|
712 | |
---|
713 | |
---|
714 | |
---|
715 | void |
---|
716 | update_area_active (area **aptr, BytePtr value) |
---|
717 | { |
---|
718 | area *a = *aptr; |
---|
719 | for (; a; a = a->older) { |
---|
720 | if ((a->low <= value) && (a->high >= value)) break; |
---|
721 | }; |
---|
722 | if (a == NULL) Bug(NULL, "Can't find active area"); |
---|
723 | a->active = value; |
---|
724 | *aptr = a; |
---|
725 | |
---|
726 | for (a = a->younger; a; a = a->younger) { |
---|
727 | a->active = a->high; |
---|
728 | } |
---|
729 | } |
---|
730 | |
---|
731 | void |
---|
732 | normalize_tcr(ExceptionInformation *xp, TCR *tcr, Boolean is_other_tcr) |
---|
733 | { |
---|
734 | void *cur_allocptr = NULL; |
---|
735 | LispObj freeptr = 0; |
---|
736 | |
---|
737 | if (xp) { |
---|
738 | if (is_other_tcr) { |
---|
739 | pc_luser_xp(xp, tcr); |
---|
740 | freeptr = xpGPR(xp, allocptr); |
---|
741 | if (fulltag_of(freeptr) == 0){ |
---|
742 | cur_allocptr = (void *) ptr_from_lispobj(freeptr); |
---|
743 | } |
---|
744 | } |
---|
745 | update_area_active((area **)&tcr->cs_area, (BytePtr) ptr_from_lispobj(xpGPR(xp, sp))); |
---|
746 | update_area_active((area **)&tcr->vs_area, (BytePtr) ptr_from_lispobj(xpGPR(xp, vsp))); |
---|
747 | update_area_active((area **)&tcr->ts_area, (BytePtr) ptr_from_lispobj(xpGPR(xp, tsp))); |
---|
748 | } else { |
---|
749 | /* In ff-call. No need to update cs_area */ |
---|
750 | cur_allocptr = (void *) (tcr->save_allocptr); |
---|
751 | tcr->save_allocptr = tcr->save_allocbase = (void *)VOID_ALLOCPTR; |
---|
752 | update_area_active((area **)&tcr->vs_area, (BytePtr) tcr->save_vsp); |
---|
753 | update_area_active((area **)&tcr->ts_area, (BytePtr) tcr->save_tsp); |
---|
754 | } |
---|
755 | if (cur_allocptr) { |
---|
756 | update_bytes_allocated(tcr, cur_allocptr); |
---|
757 | if (freeptr) { |
---|
758 | xpGPR(xp, allocptr) = VOID_ALLOCPTR; |
---|
759 | xpGPR(xp, allocbase) = VOID_ALLOCPTR; |
---|
760 | } |
---|
761 | } |
---|
762 | } |
---|
763 | |
---|
764 | /* Suspend and "normalize" other tcrs, then call a gc-like function |
---|
765 | in that context. Resume the other tcrs, then return what the |
---|
766 | function returned */ |
---|
767 | |
---|
768 | int |
---|
769 | gc_like_from_xp(ExceptionInformation *xp, int(*fun)(TCR *)) |
---|
770 | { |
---|
771 | TCR *tcr = (TCR *)ptr_from_lispobj(xpGPR(xp, rcontext)), *other_tcr; |
---|
772 | ExceptionInformation* other_xp; |
---|
773 | int result; |
---|
774 | |
---|
775 | suspend_other_threads(); |
---|
776 | if (lisp_global(GC_INHIBIT_COUNT) != 0) { |
---|
777 | resume_other_threads(); |
---|
778 | return 0; |
---|
779 | } |
---|
780 | |
---|
781 | xpGPR(xp, allocptr) = VOID_ALLOCPTR; |
---|
782 | xpGPR(xp, allocbase) = VOID_ALLOCPTR; |
---|
783 | |
---|
784 | normalize_tcr(xp, tcr, false); |
---|
785 | |
---|
786 | |
---|
787 | for (other_tcr = tcr->next; other_tcr != tcr; other_tcr = other_tcr->next) { |
---|
788 | if (other_tcr->pending_exception_context) { |
---|
789 | other_tcr->gc_context = other_tcr->pending_exception_context; |
---|
790 | } else if (other_tcr->valence == TCR_STATE_LISP) { |
---|
791 | other_tcr->gc_context = other_tcr->suspend_context; |
---|
792 | } else { |
---|
793 | /* no pending exception, didn't suspend in lisp state: |
---|
794 | must have executed a synchronous ff-call. |
---|
795 | */ |
---|
796 | other_tcr->gc_context = NULL; |
---|
797 | } |
---|
798 | normalize_tcr(other_tcr->gc_context, other_tcr, true); |
---|
799 | } |
---|
800 | |
---|
801 | |
---|
802 | |
---|
803 | result = fun(tcr); |
---|
804 | |
---|
805 | resume_other_threads(); |
---|
806 | |
---|
807 | return result; |
---|
808 | |
---|
809 | } |
---|
810 | |
---|
811 | |
---|
812 | /* Returns #bytes freed by invoking GC */ |
---|
813 | |
---|
814 | int |
---|
815 | gc_from_tcr(TCR *tcr) |
---|
816 | { |
---|
817 | area *a; |
---|
818 | BytePtr oldfree, newfree; |
---|
819 | BytePtr oldend, newend; |
---|
820 | |
---|
821 | a = active_dynamic_area; |
---|
822 | oldend = a->high; |
---|
823 | oldfree = a->active; |
---|
824 | gc(tcr); |
---|
825 | newfree = a->active; |
---|
826 | newend = a->high; |
---|
827 | return ((oldfree-newfree)+(newend-oldend)); |
---|
828 | } |
---|
829 | |
---|
830 | int |
---|
831 | gc_from_xp(ExceptionInformation *xp) |
---|
832 | { |
---|
833 | int status = gc_like_from_xp(xp, gc_from_tcr); |
---|
834 | |
---|
835 | freeGCptrs(); |
---|
836 | return status; |
---|
837 | } |
---|
838 | |
---|
839 | int |
---|
840 | purify_from_xp(ExceptionInformation *xp) |
---|
841 | { |
---|
842 | return gc_like_from_xp(xp, purify); |
---|
843 | } |
---|
844 | |
---|
845 | int |
---|
846 | impurify_from_xp(ExceptionInformation *xp) |
---|
847 | { |
---|
848 | return gc_like_from_xp(xp, impurify); |
---|
849 | } |
---|
850 | |
---|
851 | extern BytePtr |
---|
852 | current_stack_pointer(void); |
---|
853 | |
---|
854 | void |
---|
855 | protect_area(protected_area_ptr p) |
---|
856 | { |
---|
857 | BytePtr start = p->start; |
---|
858 | unsigned n = p->protsize; |
---|
859 | |
---|
860 | if (n && ! p->nprot) { |
---|
861 | ProtectMemory(start, n); |
---|
862 | p->nprot = n; |
---|
863 | } |
---|
864 | } |
---|
865 | |
---|
866 | void |
---|
867 | protect_oldspace(BytePtr end) |
---|
868 | { |
---|
869 | protected_area_ptr p = oldspace_protected_area; |
---|
870 | BytePtr |
---|
871 | start = (BytePtr) ptr_from_lispobj(lisp_global(HEAP_START)), |
---|
872 | endpage = (BytePtr)ptr_from_lispobj(align_to_power_of_2(ptr_to_lispobj(end),12)); |
---|
873 | int i, npages = (endpage-start)>>12; |
---|
874 | pageentry *pe = pagemap; |
---|
875 | |
---|
876 | p->start = start; |
---|
877 | p->end = endpage; |
---|
878 | p->protsize = endpage-start; |
---|
879 | p->nprot = 0; |
---|
880 | protect_area(p); |
---|
881 | |
---|
882 | for (i = 0; i < npages; i++, pe++) { |
---|
883 | pe->bits.modified = 0; |
---|
884 | } |
---|
885 | } |
---|
886 | |
---|
887 | |
---|
888 | |
---|
889 | |
---|
890 | protection_handler |
---|
891 | * protection_handlers[] = { |
---|
892 | do_spurious_wp_fault, |
---|
893 | do_soft_stack_overflow, |
---|
894 | do_soft_stack_overflow, |
---|
895 | do_soft_stack_overflow, |
---|
896 | do_hard_stack_overflow, |
---|
897 | do_hard_stack_overflow, |
---|
898 | do_hard_stack_overflow, |
---|
899 | do_tenured_space_write |
---|
900 | }; |
---|
901 | |
---|
902 | |
---|
903 | Boolean |
---|
904 | is_write_fault(ExceptionInformation *xp, siginfo_t *info) |
---|
905 | { |
---|
906 | /* use the siginfo if it's available. Some versions of Linux |
---|
907 | don't propagate the DSISR and TRAP fields correctly from |
---|
908 | 64- to 32-bit handlers. |
---|
909 | */ |
---|
910 | if (info) { |
---|
911 | /* |
---|
912 | To confuse matters still further, the value of SEGV_ACCERR |
---|
913 | varies quite a bit among LinuxPPC variants (the value defined |
---|
914 | in the header files varies, and the value actually set by |
---|
915 | the kernel also varies. So far, we're only looking at the |
---|
916 | siginfo under Linux and Linux always seems to generate |
---|
917 | SIGSEGV, so check for SIGSEGV and check the low 16 bits |
---|
918 | of the si_code. |
---|
919 | */ |
---|
920 | return ((info->si_signo == SIGSEGV) && |
---|
921 | ((info->si_code & 0xff) == (SEGV_ACCERR & 0xff))); |
---|
922 | } |
---|
923 | return(((xpDSISR(xp) & (1 << 25)) != 0) && |
---|
924 | (xpTRAP(xp) == |
---|
925 | #ifdef LINUX |
---|
926 | 0x0300 |
---|
927 | #endif |
---|
928 | #ifdef DARWIN |
---|
929 | 0x0300/0x100 |
---|
930 | #endif |
---|
931 | ) |
---|
932 | ); |
---|
933 | #if 0 |
---|
934 | /* Maybe worth keeping around; not sure if it's an exhaustive |
---|
935 | list of PPC instructions that could cause a WP fault */ |
---|
936 | /* Some OSes lose track of the DSISR and DSR SPRs, or don't provide |
---|
937 | valid values of those SPRs in the context they provide to |
---|
938 | exception handlers. Look at the opcode of the offending |
---|
939 | instruction & recognize 32-bit store operations */ |
---|
940 | opcode instr = *(xpPC(xp)); |
---|
941 | |
---|
942 | if (xp->regs->trap != 0x300) { |
---|
943 | return 0; |
---|
944 | } |
---|
945 | switch (instr >> 26) { |
---|
946 | case 47: /* STMW */ |
---|
947 | case 36: /* STW */ |
---|
948 | case 37: /* STWU */ |
---|
949 | return 1; |
---|
950 | case 31: |
---|
951 | switch ((instr >> 1) & 1023) { |
---|
952 | case 151: /* STWX */ |
---|
953 | case 183: /* STWUX */ |
---|
954 | return 1; |
---|
955 | default: |
---|
956 | return 0; |
---|
957 | } |
---|
958 | default: |
---|
959 | return 0; |
---|
960 | } |
---|
961 | #endif |
---|
962 | } |
---|
963 | |
---|
964 | OSStatus |
---|
965 | handle_protection_violation(ExceptionInformation *xp, siginfo_t *info) |
---|
966 | { |
---|
967 | BytePtr addr; |
---|
968 | protected_area_ptr area; |
---|
969 | protection_handler *handler; |
---|
970 | TCR *tcr = (TCR *) ptr_from_lispobj(xpGPR(xp, rcontext)); |
---|
971 | |
---|
972 | if (! is_write_fault(xp, info)) { |
---|
973 | return -1; |
---|
974 | } |
---|
975 | |
---|
976 | if (info) { |
---|
977 | addr = (BytePtr)(info->si_addr); |
---|
978 | } else { |
---|
979 | addr = (BytePtr) ((int) (xpDAR(xp))); |
---|
980 | } |
---|
981 | area = find_protected_area(addr); |
---|
982 | |
---|
983 | if (area == NULL) { /* Don't know why this fault happened. */ |
---|
984 | return -1; |
---|
985 | } |
---|
986 | |
---|
987 | handler = protection_handlers[area->why]; |
---|
988 | |
---|
989 | return handler(xp, area, addr); |
---|
990 | } |
---|
991 | |
---|
992 | |
---|
993 | protected_area_ptr |
---|
994 | new_protected_area(BytePtr start, BytePtr end, lisp_protection_kind reason, unsigned protsize, Boolean now) |
---|
995 | { |
---|
996 | protected_area_ptr p = (protected_area_ptr) allocate(sizeof(protected_area)); |
---|
997 | |
---|
998 | if (p == NULL) return NULL; |
---|
999 | p->protsize = protsize; |
---|
1000 | p->nprot = 0; |
---|
1001 | p->start = start; |
---|
1002 | p->end = end; |
---|
1003 | p->why = reason; |
---|
1004 | p->next = AllProtectedAreas; |
---|
1005 | |
---|
1006 | AllProtectedAreas = p; |
---|
1007 | if (now) { |
---|
1008 | protect_area(p); |
---|
1009 | } |
---|
1010 | |
---|
1011 | return p; |
---|
1012 | } |
---|
1013 | |
---|
1014 | /* |
---|
1015 | Un-protect the first nbytes bytes in specified area. |
---|
1016 | Note that this may cause the area to be empty. |
---|
1017 | */ |
---|
1018 | void |
---|
1019 | unprotect_area_prefix(protected_area_ptr area, size_t delta) |
---|
1020 | { |
---|
1021 | unprotect_area(area); |
---|
1022 | area->start += delta; |
---|
1023 | if ((area->start + area->protsize) <= area->end) { |
---|
1024 | protect_area(area); |
---|
1025 | } |
---|
1026 | } |
---|
1027 | |
---|
1028 | |
---|
1029 | /* |
---|
1030 | Extend the protected area, causing the preceding nbytes bytes |
---|
1031 | to be included and protected. |
---|
1032 | */ |
---|
1033 | void |
---|
1034 | protect_area_prefix(protected_area_ptr area, size_t delta) |
---|
1035 | { |
---|
1036 | unprotect_area(area); |
---|
1037 | area->start -= delta; |
---|
1038 | protect_area(area); |
---|
1039 | } |
---|
1040 | |
---|
1041 | |
---|
1042 | |
---|
1043 | OSStatus |
---|
1044 | do_hard_stack_overflow(ExceptionInformation *xp, protected_area_ptr area, BytePtr addr) |
---|
1045 | { |
---|
1046 | #ifdef SUPPORT_PRAGMA_UNUSED |
---|
1047 | #pragma unused(area,addr) |
---|
1048 | #endif |
---|
1049 | reset_lisp_process(xp); |
---|
1050 | return -1; |
---|
1051 | } |
---|
1052 | |
---|
1053 | extern area* |
---|
1054 | allocate_vstack(unsigned useable); /* This is in "pmcl-kernel.c" */ |
---|
1055 | |
---|
1056 | extern area* |
---|
1057 | allocate_tstack(unsigned useable); /* This is in "pmcl-kernel.c" */ |
---|
1058 | |
---|
1059 | #ifdef EXTEND_VSTACK |
---|
1060 | Boolean |
---|
1061 | catch_frame_p(lisp_frame *spPtr) |
---|
1062 | { |
---|
1063 | catch_frame* catch = (catch_frame *) untag(lisp_global(CATCH_TOP)); |
---|
1064 | |
---|
1065 | for (; catch; catch = (catch_frame *) untag(catch->link)) { |
---|
1066 | if (spPtr == ((lisp_frame *) catch->csp)) { |
---|
1067 | return true; |
---|
1068 | } |
---|
1069 | } |
---|
1070 | return false; |
---|
1071 | } |
---|
1072 | #endif |
---|
1073 | |
---|
1074 | Boolean |
---|
1075 | unwind_protect_cleanup_frame_p(lisp_frame *spPtr) |
---|
1076 | { |
---|
1077 | if ((spPtr->savevsp == (LispObj)NULL) || /* The frame to where the unwind-protect will return */ |
---|
1078 | (((spPtr->backlink)->savevsp) == (LispObj)NULL)) { /* The frame that returns to the kernel from the cleanup form */ |
---|
1079 | return true; |
---|
1080 | } else { |
---|
1081 | return false; |
---|
1082 | } |
---|
1083 | } |
---|
1084 | |
---|
1085 | Boolean |
---|
1086 | lexpr_entry_frame_p(lisp_frame *spPtr) |
---|
1087 | { |
---|
1088 | LispObj savelr = spPtr->savelr; |
---|
1089 | LispObj lexpr_return = (LispObj) lisp_global(LEXPR_RETURN); |
---|
1090 | LispObj lexpr_return1v = (LispObj) lisp_global(LEXPR_RETURN1V); |
---|
1091 | LispObj ret1valn = (LispObj) lisp_global(RET1VALN); |
---|
1092 | |
---|
1093 | return |
---|
1094 | (savelr == lexpr_return1v) || |
---|
1095 | (savelr == lexpr_return) || |
---|
1096 | ((savelr == ret1valn) && |
---|
1097 | (((spPtr->backlink)->savelr) == lexpr_return)); |
---|
1098 | } |
---|
1099 | |
---|
1100 | Boolean |
---|
1101 | lisp_frame_p(lisp_frame *spPtr) |
---|
1102 | { |
---|
1103 | LispObj savefn; |
---|
1104 | /* We can't just look at the size of the stack frame under the EABI |
---|
1105 | calling sequence, but that's the first thing to check. */ |
---|
1106 | if (((lisp_frame *) spPtr->backlink) != (spPtr+1)) { |
---|
1107 | return false; |
---|
1108 | } |
---|
1109 | savefn = spPtr->savefn; |
---|
1110 | return (savefn == 0) || (fulltag_of(savefn) == fulltag_misc); |
---|
1111 | |
---|
1112 | } |
---|
1113 | |
---|
1114 | |
---|
1115 | int ffcall_overflow_count = 0; |
---|
1116 | |
---|
1117 | /* Find a frame that is neither a catch frame nor one of the |
---|
1118 | lexpr_entry frames We don't check for non-lisp frames here because |
---|
1119 | we'll always stop before we get there due to a dummy lisp frame |
---|
1120 | pushed by .SPcallback that masks out the foreign frames. The one |
---|
1121 | exception is that there is a non-lisp frame without a valid VSP |
---|
1122 | while in the process of ppc-ff-call. We recognize that because its |
---|
1123 | savelr is NIL. If the saved VSP itself is 0 or the savevsp in the |
---|
1124 | next frame is 0, then we're executing an unwind-protect cleanup |
---|
1125 | form, and the top stack frame belongs to its (no longer extant) |
---|
1126 | catch frame. */ |
---|
1127 | |
---|
1128 | #ifdef EXTEND_VSTACK |
---|
1129 | lisp_frame * |
---|
1130 | find_non_catch_frame_from_xp (ExceptionInformation *xp) |
---|
1131 | { |
---|
1132 | lisp_frame *spPtr = (lisp_frame *) xpGPR(xp, sp); |
---|
1133 | if ((((unsigned) spPtr) + sizeof(lisp_frame)) != ((unsigned) (spPtr->backlink))) { |
---|
1134 | ffcall_overflow_count++; /* This is mostly so I can breakpoint here */ |
---|
1135 | } |
---|
1136 | for (; !lisp_frame_p(spPtr) || /* In the process of ppc-ff-call */ |
---|
1137 | unwind_protect_cleanup_frame_p(spPtr) || |
---|
1138 | catch_frame_p(spPtr) || |
---|
1139 | lexpr_entry_frame_p(spPtr) ; ) { |
---|
1140 | spPtr = spPtr->backlink; |
---|
1141 | }; |
---|
1142 | return spPtr; |
---|
1143 | } |
---|
1144 | #endif |
---|
1145 | |
---|
1146 | #ifdef EXTEND_VSTACK |
---|
1147 | Boolean |
---|
1148 | db_link_chain_in_area_p (area *a) |
---|
1149 | { |
---|
1150 | LispObj *db = (LispObj *) lisp_global(DB_LINK), |
---|
1151 | *high = (LispObj *) a->high, |
---|
1152 | *low = (LispObj *) a->low; |
---|
1153 | for (; db; db = (LispObj *) *db) { |
---|
1154 | if ((db >= low) && (db < high)) return true; |
---|
1155 | }; |
---|
1156 | return false; |
---|
1157 | } |
---|
1158 | #endif |
---|
1159 | |
---|
1160 | |
---|
1161 | |
---|
1162 | |
---|
1163 | /* Note: CURRENT_VS (CURRENT_TS) is always either the area containing |
---|
1164 | the current value of VSP (TSP) or an older area. */ |
---|
1165 | |
---|
1166 | OSStatus |
---|
1167 | do_vsp_overflow (ExceptionInformation *xp, BytePtr addr) |
---|
1168 | { |
---|
1169 | TCR* tcr = (TCR *) ptr_from_lispobj(xpGPR(xp, rcontext)); |
---|
1170 | area *a = tcr->vs_area; |
---|
1171 | protected_area_ptr vsp_soft = a->softprot; |
---|
1172 | unprotect_area(vsp_soft); |
---|
1173 | signal_stack_soft_overflow(xp,vsp); |
---|
1174 | return 0; |
---|
1175 | } |
---|
1176 | |
---|
1177 | |
---|
1178 | OSStatus |
---|
1179 | do_tsp_overflow (ExceptionInformation *xp, BytePtr addr) |
---|
1180 | { |
---|
1181 | TCR* tcr = (TCR *) ptr_from_lispobj(xpGPR(xp, rcontext)); |
---|
1182 | area *a = tcr->ts_area; |
---|
1183 | protected_area_ptr tsp_soft = a->softprot; |
---|
1184 | unprotect_area(tsp_soft); |
---|
1185 | signal_stack_soft_overflow(xp,tsp); |
---|
1186 | return 0; |
---|
1187 | } |
---|
1188 | |
---|
1189 | OSStatus |
---|
1190 | do_soft_stack_overflow(ExceptionInformation *xp, protected_area_ptr prot_area, BytePtr addr) |
---|
1191 | { |
---|
1192 | /* Trying to write into a guard page on the vstack or tstack. |
---|
1193 | Allocate a new stack segment, emulate stwu and stwux for the TSP, and |
---|
1194 | signal an error_stack_overflow condition. |
---|
1195 | */ |
---|
1196 | lisp_protection_kind which = prot_area->why; |
---|
1197 | Boolean on_TSP = (which == kTSPsoftguard); |
---|
1198 | |
---|
1199 | if (on_TSP) { |
---|
1200 | return do_tsp_overflow(xp, addr); |
---|
1201 | } else { |
---|
1202 | return do_vsp_overflow(xp, addr); |
---|
1203 | } |
---|
1204 | } |
---|
1205 | |
---|
1206 | OSStatus |
---|
1207 | do_spurious_wp_fault(ExceptionInformation *xp, protected_area_ptr area, BytePtr addr) |
---|
1208 | { |
---|
1209 | #ifdef SUPPORT_PRAGMA_UNUSED |
---|
1210 | #pragma unused(xp,area,addr) |
---|
1211 | #endif |
---|
1212 | return -1; |
---|
1213 | } |
---|
1214 | |
---|
1215 | /* |
---|
1216 | We have a couple of choices here. We can simply unprotect the page |
---|
1217 | and let the store happen on return, or we can try to emulate writes |
---|
1218 | that we know will involve an intergenerational reference. Both are |
---|
1219 | correct as far as EGC constraints go, but the latter approach is |
---|
1220 | probably more efficient. (This only matters in the case where the |
---|
1221 | GC runs after this exception handler returns but before the write |
---|
1222 | actually happens. If we didn't emulate node stores here, the EGC |
---|
1223 | would scan the newly-writen page, find nothing interesting, and |
---|
1224 | run to completion. This thread will try the write again afer it |
---|
1225 | resumes, the page'll be re-protected, and we'll have taken this |
---|
1226 | fault twice. The whole scenario shouldn't happen very often, but |
---|
1227 | (having already taken a fault and committed to an mprotect syscall) |
---|
1228 | we might as well emulate stores involving intergenerational references, |
---|
1229 | since they're pretty easy to identify. |
---|
1230 | |
---|
1231 | Note that cases involving two or more threads writing to the same |
---|
1232 | page (before either of them can run this handler) is benign: one |
---|
1233 | invocation of the handler will just unprotect an unprotected page in |
---|
1234 | that case. |
---|
1235 | |
---|
1236 | If there are GCs (or any other suspensions of the thread between |
---|
1237 | the time that the write fault was detected and the time that the |
---|
1238 | exception lock is obtained) none of this stuff happens. |
---|
1239 | */ |
---|
1240 | |
---|
1241 | /* |
---|
1242 | Return true (and emulate the instruction) iff: |
---|
1243 | a) the fault was caused by an "stw rs,d(ra)" or "stwx rs,ra.rb" |
---|
1244 | instruction. |
---|
1245 | b) RS is a node register (>= fn) |
---|
1246 | c) RS is tagged as a cons or vector |
---|
1247 | d) RS is in some ephemeral generation. |
---|
1248 | This is slightly conservative, since RS may be no younger than the |
---|
1249 | EA being written to. |
---|
1250 | */ |
---|
1251 | Boolean |
---|
1252 | is_ephemeral_node_store(ExceptionInformation *xp, BytePtr ea) |
---|
1253 | { |
---|
1254 | if (((ptr_to_lispobj(ea)) & 3) == 0) { |
---|
1255 | opcode instr = *xpPC(xp); |
---|
1256 | |
---|
1257 | if (X_opcode_p(instr,major_opcode_X31,minor_opcode_STWX) || |
---|
1258 | major_opcode_p(instr, major_opcode_STW)) { |
---|
1259 | LispObj |
---|
1260 | rs = RS_field(instr), |
---|
1261 | rsval = xpGPR(xp,rs), |
---|
1262 | tag = fulltag_of(rsval); |
---|
1263 | |
---|
1264 | if (rs >= fn) { |
---|
1265 | if ((tag == fulltag_misc) || (tag == fulltag_cons)) { |
---|
1266 | if (((BytePtr)ptr_from_lispobj(rsval) > tenured_area->high) && |
---|
1267 | ((BytePtr)ptr_from_lispobj(rsval) < active_dynamic_area->high)) { |
---|
1268 | *(LispObj *)ea = rsval; |
---|
1269 | return true; |
---|
1270 | } |
---|
1271 | } |
---|
1272 | } |
---|
1273 | } |
---|
1274 | } |
---|
1275 | return false; |
---|
1276 | } |
---|
1277 | |
---|
1278 | |
---|
1279 | |
---|
1280 | |
---|
1281 | OSStatus |
---|
1282 | do_tenured_space_write(ExceptionInformation *xp, protected_area_ptr area, BytePtr addr) |
---|
1283 | { |
---|
1284 | /* Note that the page has been "newly" written to, then unprotect it |
---|
1285 | and continue */ |
---|
1286 | unsigned |
---|
1287 | page_start = ((unsigned)addr) & ~4095, |
---|
1288 | pgno = (page_start - (unsigned)(area->start)) >> 12; |
---|
1289 | |
---|
1290 | if (lisp_global(IN_GC) != 0) { |
---|
1291 | Bug(xp, "Tenured space protected in GC"); |
---|
1292 | } |
---|
1293 | |
---|
1294 | pagemap[pgno].bits.modified = 1; |
---|
1295 | UnProtectMemory((LogicalAddress)page_start, 4096); |
---|
1296 | if (is_ephemeral_node_store(xp, addr)) { |
---|
1297 | adjust_exception_pc(xp,4); |
---|
1298 | } |
---|
1299 | return 0; |
---|
1300 | } |
---|
1301 | |
---|
1302 | |
---|
1303 | |
---|
1304 | OSStatus |
---|
1305 | handle_sigfpe(ExceptionInformation *xp, TCR *tcr) |
---|
1306 | { |
---|
1307 | (void) zero_fpscr(); |
---|
1308 | enable_fp_exceptions(); |
---|
1309 | |
---|
1310 | |
---|
1311 | tcr->lisp_fpscr.words.l = xpFPSCR(xp) & ~_FPU_RESERVED; |
---|
1312 | |
---|
1313 | /* 'handle_fpux_binop' scans back from the specified PC until it finds an FPU |
---|
1314 | operation; there's an FPU operation right at the PC, so tell it to start |
---|
1315 | looking one word beyond */ |
---|
1316 | return handle_fpux_binop(xp, (unsigned)(xpPC(xp))+4); |
---|
1317 | } |
---|
1318 | |
---|
1319 | |
---|
1320 | int |
---|
1321 | altivec_present = 1; |
---|
1322 | |
---|
1323 | |
---|
1324 | |
---|
1325 | OSStatus |
---|
1326 | PMCL_exception_handler(int xnum, |
---|
1327 | ExceptionInformation *xp, |
---|
1328 | TCR *tcr, |
---|
1329 | siginfo_t *info) |
---|
1330 | { |
---|
1331 | unsigned oldMQ; |
---|
1332 | OSStatus status = -1; |
---|
1333 | pc program_counter; |
---|
1334 | opcode instruction; |
---|
1335 | |
---|
1336 | |
---|
1337 | #ifdef LINUX |
---|
1338 | oldMQ = xpGPR(xp,PT_MQ); |
---|
1339 | xpGPR(xp,PT_MQ) = 0; |
---|
1340 | #endif |
---|
1341 | program_counter = xpPC(xp); |
---|
1342 | instruction = *program_counter; |
---|
1343 | |
---|
1344 | if (instruction == ALLOC_TRAP_INSTRUCTION) { |
---|
1345 | status = handle_alloc_trap(xp, tcr); |
---|
1346 | } else if ((xnum == SIGSEGV) || |
---|
1347 | (xnum == SIGBUS)) { |
---|
1348 | if (tcr->suspend_total != |
---|
1349 | tcr->suspend_total_on_exception_entry) { |
---|
1350 | /* |
---|
1351 | This thread's been suspended since the exception occurred |
---|
1352 | (possibly by the GC); that makes it hard to do anything |
---|
1353 | meaningful about protection violations - there's no guarantee |
---|
1354 | that the addess in question is still protected, the object |
---|
1355 | being written to may have moved, etc. Retry the instuction. |
---|
1356 | If it faults again, hopefully it'll eventually do so in an |
---|
1357 | environmet where this handler runs without having been |
---|
1358 | suspended. Note that a pending write to tenured space hasn't |
---|
1359 | happened yet. |
---|
1360 | */ |
---|
1361 | status = 0; |
---|
1362 | } else { |
---|
1363 | status = handle_protection_violation(xp, info); |
---|
1364 | } |
---|
1365 | } else if (xnum == SIGFPE) { |
---|
1366 | status = handle_sigfpe(xp, tcr); |
---|
1367 | } else if ((xnum == SIGILL) || (xnum == SIGTRAP)) { |
---|
1368 | if (instruction == GC_TRAP_INSTRUCTION) { |
---|
1369 | status = handle_gc_trap(xp, tcr); |
---|
1370 | } else if (IS_UUO(instruction)) { |
---|
1371 | status = handle_uuo(xp, instruction, program_counter); |
---|
1372 | } else if (is_conditional_trap(instruction)) { |
---|
1373 | status = handle_trap(xp, instruction, program_counter); |
---|
1374 | } |
---|
1375 | } else if (xnum == SIGNAL_FOR_PROCESS_INTERRUPT) { |
---|
1376 | tcr->interrupt_level = (-1 << fixnumshift); |
---|
1377 | tcr->interrupt_pending = 0; |
---|
1378 | callback_for_trap(nrs_CMAIN.vcell, xp, 0, TWI_instruction(TO_GT,nargs,0),0, 0); |
---|
1379 | tcr->interrupt_level = 0; |
---|
1380 | tcr->interrupt_pending = 0; |
---|
1381 | status = 0; |
---|
1382 | } |
---|
1383 | |
---|
1384 | #ifdef LINUX |
---|
1385 | xpGPR(xp,PT_MQ) = oldMQ; |
---|
1386 | #endif |
---|
1387 | return status; |
---|
1388 | } |
---|
1389 | |
---|
1390 | void |
---|
1391 | adjust_exception_pc(ExceptionInformation *xp, int delta) |
---|
1392 | { |
---|
1393 | xpPC(xp) += (delta >> 2); |
---|
1394 | } |
---|
1395 | |
---|
1396 | |
---|
1397 | /* |
---|
1398 | This wants to scan backwards until "where" points to an instruction |
---|
1399 | whose major opcode is either 63 (double-float) or 59 (single-float) |
---|
1400 | */ |
---|
1401 | |
---|
1402 | OSStatus |
---|
1403 | handle_fpux_binop(ExceptionInformation *xp, unsigned where) |
---|
1404 | { |
---|
1405 | OSStatus err; |
---|
1406 | unsigned *there = (unsigned *) where, instr, errnum; |
---|
1407 | int i = TRAP_LOOKUP_TRIES, delta = 0; |
---|
1408 | |
---|
1409 | while (i--) { |
---|
1410 | instr = *--there; |
---|
1411 | delta -= 4; |
---|
1412 | if (codevec_hdr_p(instr)) { |
---|
1413 | return -1; |
---|
1414 | } |
---|
1415 | if (major_opcode_p(instr, major_opcode_FPU_DOUBLE)) { |
---|
1416 | errnum = error_FPU_exception_double; |
---|
1417 | break; |
---|
1418 | } |
---|
1419 | |
---|
1420 | if (major_opcode_p(instr, major_opcode_FPU_SINGLE)) { |
---|
1421 | errnum = error_FPU_exception_short; |
---|
1422 | break; |
---|
1423 | } |
---|
1424 | } |
---|
1425 | |
---|
1426 | err = handle_error(xp, errnum, rcontext, 0, (unsigned) there); |
---|
1427 | /* Yeah, we said "non-continuable". In case we ever change that ... */ |
---|
1428 | |
---|
1429 | adjust_exception_pc(xp, delta); |
---|
1430 | xpFPSCR(xp) &= 0x03fff; |
---|
1431 | |
---|
1432 | return err; |
---|
1433 | |
---|
1434 | } |
---|
1435 | |
---|
1436 | OSStatus |
---|
1437 | handle_uuo(ExceptionInformation *xp, opcode the_uuo, pc where) |
---|
1438 | { |
---|
1439 | #ifdef SUPPORT_PRAGMA_UNUSED |
---|
1440 | #pragma unused(where) |
---|
1441 | #endif |
---|
1442 | unsigned |
---|
1443 | minor = UUO_MINOR(the_uuo), |
---|
1444 | rt = 0x1f & (the_uuo >> 21), |
---|
1445 | ra = 0x1f & (the_uuo >> 16), |
---|
1446 | rb = 0x1f & (the_uuo >> 11), |
---|
1447 | errnum = 0x3ff & (the_uuo >> 16); |
---|
1448 | |
---|
1449 | OSStatus status = -1; |
---|
1450 | |
---|
1451 | int bump = 4; |
---|
1452 | |
---|
1453 | switch (minor) { |
---|
1454 | |
---|
1455 | case UUO_ZERO_FPSCR: |
---|
1456 | status = 0; |
---|
1457 | xpFPSCR(xp) = 0; |
---|
1458 | break; |
---|
1459 | |
---|
1460 | |
---|
1461 | case UUO_INTERR: |
---|
1462 | status = handle_error(xp, errnum, rb, 0, (unsigned) where); |
---|
1463 | break; |
---|
1464 | |
---|
1465 | case UUO_INTCERR: |
---|
1466 | status = handle_error(xp, errnum, rb, 1, (unsigned) where); |
---|
1467 | if (errnum == error_udf_call) { |
---|
1468 | /* If lisp's returned from a continuable undefined-function call, |
---|
1469 | it's put a code vector in the xp's PC. Don't advance the |
---|
1470 | PC ... */ |
---|
1471 | bump = 0; |
---|
1472 | } |
---|
1473 | break; |
---|
1474 | |
---|
1475 | case UUO_FPUX_BINOP: |
---|
1476 | status = handle_fpux_binop(xp, (unsigned)where); |
---|
1477 | bump = 0; |
---|
1478 | break; |
---|
1479 | |
---|
1480 | default: |
---|
1481 | status = -1; |
---|
1482 | bump = 0; |
---|
1483 | } |
---|
1484 | |
---|
1485 | if ((!status) && bump) { |
---|
1486 | adjust_exception_pc(xp, bump); |
---|
1487 | } |
---|
1488 | return status; |
---|
1489 | } |
---|
1490 | |
---|
1491 | unsigned |
---|
1492 | register_codevector_contains_pc (unsigned lisp_function, unsigned where) |
---|
1493 | { |
---|
1494 | unsigned code_vector, size; |
---|
1495 | |
---|
1496 | if ((fulltag_of(lisp_function) == fulltag_misc) && |
---|
1497 | (header_subtag(header_of(lisp_function)) == subtag_function)) { |
---|
1498 | code_vector = deref(lisp_function, 1); |
---|
1499 | size = header_element_count(header_of(code_vector)) << 2; |
---|
1500 | if ((untag(code_vector) < where) && (where < (code_vector + size))) |
---|
1501 | return(code_vector); |
---|
1502 | } |
---|
1503 | |
---|
1504 | return(0); |
---|
1505 | } |
---|
1506 | |
---|
1507 | /* Callback to lisp to handle a trap. Need to translate the |
---|
1508 | PC (where) into one of two forms of pairs: |
---|
1509 | |
---|
1510 | 1. If PC is in fn or nfn's code vector, use the register number |
---|
1511 | of fn or nfn and the index into that function's code vector. |
---|
1512 | 2. Otherwise use 0 and the pc itself |
---|
1513 | */ |
---|
1514 | void |
---|
1515 | callback_for_trap (LispObj callback_macptr, ExceptionInformation *xp, unsigned where, |
---|
1516 | unsigned arg1, unsigned arg2, unsigned arg3) |
---|
1517 | { |
---|
1518 | unsigned code_vector = register_codevector_contains_pc(xpGPR(xp, fn), where); |
---|
1519 | unsigned register_number = fn; |
---|
1520 | unsigned index = where; |
---|
1521 | |
---|
1522 | if (code_vector == 0) { |
---|
1523 | register_number = nfn; |
---|
1524 | code_vector = register_codevector_contains_pc(xpGPR(xp, nfn), where); |
---|
1525 | } |
---|
1526 | if (code_vector == 0) |
---|
1527 | register_number = 0; |
---|
1528 | else |
---|
1529 | index = (where - (code_vector + misc_data_offset)) >> 2; |
---|
1530 | callback_to_lisp(callback_macptr, xp, register_number, index, arg1, arg2, arg3); |
---|
1531 | } |
---|
1532 | |
---|
1533 | void |
---|
1534 | callback_to_lisp (LispObj callback_macptr, ExceptionInformation *xp, |
---|
1535 | unsigned arg1, unsigned arg2, unsigned arg3, unsigned arg4, unsigned arg5) |
---|
1536 | { |
---|
1537 | sigset_t mask; |
---|
1538 | unsigned callback_ptr, i; |
---|
1539 | area *a; |
---|
1540 | |
---|
1541 | TCR *tcr = (TCR *)ptr_from_lispobj(xpGPR(xp, rcontext)); |
---|
1542 | |
---|
1543 | /* Put the active stack pointer where .SPcallback expects it */ |
---|
1544 | a = tcr->cs_area; |
---|
1545 | a->active = (BytePtr) ptr_from_lispobj(xpGPR(xp, sp)); |
---|
1546 | |
---|
1547 | /* Copy globals from the exception frame to tcr */ |
---|
1548 | tcr->save_allocptr = (void *)ptr_from_lispobj(xpGPR(xp, allocptr)); |
---|
1549 | tcr->save_allocbase = (void *)ptr_from_lispobj(xpGPR(xp, allocbase)); |
---|
1550 | tcr->save_vsp = (LispObj*) ptr_from_lispobj(xpGPR(xp, vsp)); |
---|
1551 | tcr->save_tsp = (LispObj*) ptr_from_lispobj(xpGPR(xp, tsp)); |
---|
1552 | |
---|
1553 | |
---|
1554 | |
---|
1555 | /* Call back. |
---|
1556 | Lisp will handle trampolining through some code that |
---|
1557 | will push lr/fn & pc/nfn stack frames for backtrace. |
---|
1558 | */ |
---|
1559 | callback_ptr = ((macptr *)ptr_from_lispobj(untag(callback_macptr)))->address; |
---|
1560 | UNLOCK(lisp_global(EXCEPTION_LOCK), tcr); |
---|
1561 | ((void (*)())callback_ptr) (xp, arg1, arg2, arg3, arg4, arg5); |
---|
1562 | LOCK(lisp_global(EXCEPTION_LOCK), tcr); |
---|
1563 | |
---|
1564 | |
---|
1565 | |
---|
1566 | /* Copy GC registers back into exception frame */ |
---|
1567 | xpGPR(xp, allocbase) = (LispObj) ptr_to_lispobj(tcr->save_allocbase); |
---|
1568 | xpGPR(xp, allocptr) = (LispObj) ptr_to_lispobj(tcr->save_allocptr); |
---|
1569 | } |
---|
1570 | |
---|
1571 | area * |
---|
1572 | allocate_no_stack (unsigned size) |
---|
1573 | { |
---|
1574 | #ifdef SUPPORT_PRAGMA_UNUSED |
---|
1575 | #pragma unused(size) |
---|
1576 | #endif |
---|
1577 | |
---|
1578 | return (area *) NULL; |
---|
1579 | } |
---|
1580 | |
---|
1581 | |
---|
1582 | |
---|
1583 | |
---|
1584 | |
---|
1585 | |
---|
1586 | /* callback to (symbol-value cmain) if it is a macptr, |
---|
1587 | otherwise report cause and function name to console. |
---|
1588 | Returns noErr if exception handled OK */ |
---|
1589 | OSStatus |
---|
1590 | handle_trap(ExceptionInformation *xp, opcode the_trap, pc where) |
---|
1591 | { |
---|
1592 | unsigned instr, err_arg1 = 0, err_arg2 = 0, err_arg3 = 0; |
---|
1593 | int ra, rs, fn_reg = 0; |
---|
1594 | char * error_msg = NULL; |
---|
1595 | char name[kNameBufLen]; |
---|
1596 | LispObj cmain = nrs_CMAIN.vcell; |
---|
1597 | Boolean event_poll_p = false; |
---|
1598 | int old_interrupt_level = 0; |
---|
1599 | TCR *tcr = (TCR *)ptr_from_lispobj(xpGPR(xp, rcontext)); |
---|
1600 | |
---|
1601 | /* If we got here, "the_trap" is either a TWI or a TW instruction. |
---|
1602 | It's a TWI instruction iff its major opcode is major_opcode_TWI. */ |
---|
1603 | |
---|
1604 | /* If it's a "twllt" instruction where RA == sp, it's a failed |
---|
1605 | control stack overflow check. In that case: |
---|
1606 | |
---|
1607 | a) We're in "yellow zone" mode if the value of the lisp_global(CS_OVERFLOW_LIMIT) |
---|
1608 | is CS_OVERFLOW_FORCE_LIMIT. If we're not already in yellow zone mode, attempt to create |
---|
1609 | a new thread and continue execution on its stack. If that fails, call |
---|
1610 | signal_stack_soft_overflow to enter yellow zone mode and signal the condition to lisp. |
---|
1611 | |
---|
1612 | b) If we're already in "yellow zone" mode, then: |
---|
1613 | |
---|
1614 | 1) if the SP is past the current control-stack area's hard overflow limit, |
---|
1615 | signal a "hard" stack overflow error (e.g., throw to toplevel as quickly as |
---|
1616 | possible. If we aren't in "yellow zone" mode, attempt to continue on another |
---|
1617 | thread first. |
---|
1618 | |
---|
1619 | 2) if SP is "well" (> 4K) below its soft overflow limit, set lisp_global(CS_OVERFLOW_LIMIT) |
---|
1620 | to its "real" value. We're out of "yellow zone mode" in this case. |
---|
1621 | |
---|
1622 | 3) Otherwise, do nothing. We'll continue to trap every time something gets pushed |
---|
1623 | on the control stack, so we should try to detect and handle all of these cases |
---|
1624 | fairly quickly. Of course, the trap overhead is going to slow things down quite a bit. |
---|
1625 | */ |
---|
1626 | |
---|
1627 | if (X_opcode_p(the_trap,major_opcode_X31,minor_opcode_TW) && |
---|
1628 | (RA_field(the_trap) == sp) && |
---|
1629 | (TO_field(the_trap) == TO_LO)) { |
---|
1630 | area |
---|
1631 | *CS_area = tcr->cs_area, |
---|
1632 | *VS_area = tcr->vs_area; |
---|
1633 | |
---|
1634 | unsigned |
---|
1635 | current_SP = xpGPR(xp,sp), |
---|
1636 | current_VSP = xpGPR(xp,vsp); |
---|
1637 | |
---|
1638 | if (current_SP < (unsigned) (CS_area->hardlimit)) { |
---|
1639 | /* If we're not in soft overflow mode yet, assume that the |
---|
1640 | user has set the soft overflow size very small and try to |
---|
1641 | continue on another thread before throwing to toplevel */ |
---|
1642 | if ((tcr->cs_limit == CS_OVERFLOW_FORCE_LIMIT)) { |
---|
1643 | reset_lisp_process(xp); |
---|
1644 | } |
---|
1645 | } else { |
---|
1646 | if (tcr->cs_limit == CS_OVERFLOW_FORCE_LIMIT) { |
---|
1647 | /* If the control stack pointer is at least 4K away from its soft limit |
---|
1648 | and the value stack pointer is at least 4K away from its soft limit, |
---|
1649 | stop trapping. Else keep trapping. */ |
---|
1650 | if ((current_SP > (unsigned) ((CS_area->softlimit)+4096)) && |
---|
1651 | (current_VSP > (unsigned) ((VS_area->softlimit)+4096))) { |
---|
1652 | protected_area_ptr vs_soft = VS_area->softprot; |
---|
1653 | if (vs_soft->nprot == 0) { |
---|
1654 | protect_area(vs_soft); |
---|
1655 | } |
---|
1656 | tcr->cs_limit = ptr_to_lispobj(CS_area->softlimit); |
---|
1657 | } |
---|
1658 | } else { |
---|
1659 | tcr->cs_limit = ptr_to_lispobj(CS_area->hardlimit); |
---|
1660 | signal_stack_soft_overflow(xp, sp); |
---|
1661 | } |
---|
1662 | } |
---|
1663 | |
---|
1664 | adjust_exception_pc(xp, 4); |
---|
1665 | return noErr; |
---|
1666 | } else { |
---|
1667 | if (the_trap == LISP_BREAK_INSTRUCTION) { |
---|
1668 | char *message = (char *) ptr_from_lispobj(xpGPR(xp,3)); |
---|
1669 | set_xpPC(xp, xpLR(xp)); |
---|
1670 | if (message == NULL) { |
---|
1671 | message = "Lisp Breakpoint"; |
---|
1672 | } |
---|
1673 | lisp_Debugger(xp, debug_entry_dbg,message); |
---|
1674 | return noErr; |
---|
1675 | } |
---|
1676 | /* |
---|
1677 | twlle ra,rb is used to detect tlb overflow, where RA = current |
---|
1678 | limit and RB = index to use. |
---|
1679 | */ |
---|
1680 | if ((X_opcode_p(the_trap, 31, minor_opcode_TW)) && |
---|
1681 | (TO_field(the_trap) == (TO_LO|TO_EQ))) { |
---|
1682 | if (extend_tcr_tlb(tcr, xp, RA_field(the_trap), RB_field(the_trap))) { |
---|
1683 | return noErr; |
---|
1684 | } |
---|
1685 | return -1; |
---|
1686 | } |
---|
1687 | |
---|
1688 | if ((fulltag_of(cmain) == fulltag_misc) && |
---|
1689 | (header_subtag(header_of(cmain)) == subtag_macptr)) { |
---|
1690 | /* cmain is a macptr, we can call back to lisp */ |
---|
1691 | if (the_trap == TWI_instruction(TO_GT,nargs,0)) { |
---|
1692 | /* Disable interrupts if we're about to process one */ |
---|
1693 | event_poll_p = true; /* remember to turn interrupts back on */ |
---|
1694 | tcr->interrupt_level = (-1 << fixnumshift); |
---|
1695 | tcr->interrupt_pending = 0; |
---|
1696 | } |
---|
1697 | callback_for_trap(cmain, xp, (unsigned) where, (unsigned) the_trap, 0, 0); |
---|
1698 | if (event_poll_p) { |
---|
1699 | tcr->interrupt_level = 0; |
---|
1700 | tcr->interrupt_pending = 0; |
---|
1701 | } |
---|
1702 | adjust_exception_pc(xp, 4); |
---|
1703 | return(noErr); |
---|
1704 | } |
---|
1705 | return -1; |
---|
1706 | } |
---|
1707 | } |
---|
1708 | |
---|
1709 | |
---|
1710 | /* Look at up to TRAP_LOOKUP_TRIES instrs before trap instr for a pattern. |
---|
1711 | Stop if subtag_code_vector is encountered. */ |
---|
1712 | unsigned |
---|
1713 | scan_for_instr( unsigned target, unsigned mask, pc where ) |
---|
1714 | { |
---|
1715 | int i = TRAP_LOOKUP_TRIES; |
---|
1716 | |
---|
1717 | while( i-- ) { |
---|
1718 | unsigned instr = *(--where); |
---|
1719 | if ( codevec_hdr_p(instr) ) { |
---|
1720 | return 0; |
---|
1721 | } else if ( match_instr(instr, mask, target) ) { |
---|
1722 | return instr; |
---|
1723 | } |
---|
1724 | } |
---|
1725 | return 0; |
---|
1726 | } |
---|
1727 | |
---|
1728 | |
---|
1729 | void non_fatal_error( char *msg ) |
---|
1730 | { |
---|
1731 | fprintf( stderr, "Non-fatal error: %s.\n", msg ); |
---|
1732 | fflush( stderr ); |
---|
1733 | } |
---|
1734 | |
---|
1735 | /* The main opcode. */ |
---|
1736 | |
---|
1737 | int |
---|
1738 | is_conditional_trap(opcode instr) |
---|
1739 | { |
---|
1740 | unsigned to = TO_field(instr); |
---|
1741 | int is_tw = X_opcode_p(instr,major_opcode_X31,minor_opcode_TW); |
---|
1742 | |
---|
1743 | #ifndef MACOS |
---|
1744 | if (instr == LISP_BREAK_INSTRUCTION) { |
---|
1745 | return 1; |
---|
1746 | } |
---|
1747 | #endif |
---|
1748 | if (is_tw || major_opcode_p(instr,major_opcode_TWI)) { |
---|
1749 | /* A "tw" or "twi" instruction. To be unconditional, the EQ bit must be set |
---|
1750 | in the TO mask and either the register operands (if "tw") are the same or |
---|
1751 | either both of the signed or both of the unsigned inequality bits |
---|
1752 | must be set. */ |
---|
1753 | if (! (to & TO_EQ)) { |
---|
1754 | return 1; /* Won't trap on EQ: conditional */ |
---|
1755 | } |
---|
1756 | if (is_tw && (RA_field(instr) == RB_field(instr))) { |
---|
1757 | return 0; /* Will trap on EQ, same regs: unconditional */ |
---|
1758 | } |
---|
1759 | if (((to & (TO_LO|TO_HI)) == (TO_LO|TO_HI)) || |
---|
1760 | ((to & (TO_LT|TO_GT)) == (TO_LT|TO_GT))) { |
---|
1761 | return 0; /* Will trap on EQ and either (LT|GT) or (LO|HI) : unconditional */ |
---|
1762 | } |
---|
1763 | return 1; /* must be conditional */ |
---|
1764 | } |
---|
1765 | return 0; /* Not "tw" or "twi". Let debugger have it */ |
---|
1766 | } |
---|
1767 | |
---|
1768 | OSStatus |
---|
1769 | handle_error(ExceptionInformation *xp, unsigned errnum, unsigned rb, unsigned continuable, unsigned where) |
---|
1770 | { |
---|
1771 | LispObj pname; |
---|
1772 | LispObj errdisp = nrs_ERRDISP.vcell; |
---|
1773 | |
---|
1774 | if ((fulltag_of(errdisp) == fulltag_misc) && |
---|
1775 | (header_subtag(header_of(errdisp)) == subtag_macptr)) { |
---|
1776 | /* errdisp is a macptr, we can call back to lisp */ |
---|
1777 | callback_for_trap(errdisp, xp, where, errnum, rb, continuable); |
---|
1778 | return(0); |
---|
1779 | } |
---|
1780 | |
---|
1781 | return(-1); |
---|
1782 | } |
---|
1783 | |
---|
1784 | |
---|
1785 | /* |
---|
1786 | Current thread has all signals masked. Before unmasking them, |
---|
1787 | make it appear that the current thread has been suspended. |
---|
1788 | (This is to handle the case where another thread is trying |
---|
1789 | to GC before this thread is able to sieze the exception lock.) |
---|
1790 | */ |
---|
1791 | int |
---|
1792 | prepare_to_wait_for_exception_lock(TCR *tcr, |
---|
1793 | ExceptionInformationPowerPC *context) |
---|
1794 | { |
---|
1795 | int old_valence = tcr->valence; |
---|
1796 | |
---|
1797 | tcr->pending_exception_context = context; |
---|
1798 | tcr->suspend_total_on_exception_entry = |
---|
1799 | tcr->suspend_total; |
---|
1800 | tcr->valence = TCR_STATE_EXCEPTION_WAIT; |
---|
1801 | |
---|
1802 | ALLOW_EXCEPTIONS(context); |
---|
1803 | return old_valence; |
---|
1804 | } |
---|
1805 | |
---|
1806 | void |
---|
1807 | wait_for_exception_lock_in_handler(TCR *tcr, |
---|
1808 | ExceptionInformationPowerPC *context, |
---|
1809 | xframe_list *xf) |
---|
1810 | { |
---|
1811 | |
---|
1812 | LOCK(lisp_global(EXCEPTION_LOCK), tcr); |
---|
1813 | xf->curr = context; |
---|
1814 | xf->prev = tcr->xframe; |
---|
1815 | tcr->xframe = xf; |
---|
1816 | tcr->pending_exception_context = NULL; |
---|
1817 | tcr->valence = TCR_STATE_FOREIGN; |
---|
1818 | } |
---|
1819 | |
---|
1820 | void |
---|
1821 | unlock_exception_lock_in_handler(TCR *tcr) |
---|
1822 | { |
---|
1823 | tcr->pending_exception_context = tcr->xframe->curr; |
---|
1824 | tcr->xframe = tcr->xframe->prev; |
---|
1825 | tcr->valence = TCR_STATE_EXCEPTION_RETURN; |
---|
1826 | UNLOCK(lisp_global(EXCEPTION_LOCK),tcr); |
---|
1827 | } |
---|
1828 | |
---|
1829 | /* |
---|
1830 | If an interrupt is pending on exception exit, try to ensure |
---|
1831 | that the thread sees it as soon as it's able to run. |
---|
1832 | */ |
---|
1833 | void |
---|
1834 | raise_pending_interrupt(TCR *tcr) |
---|
1835 | { |
---|
1836 | if (tcr->interrupt_level > 0) { |
---|
1837 | pthread_kill((pthread_t)ptr_from_lispobj(tcr->osid), SIGNAL_FOR_PROCESS_INTERRUPT); |
---|
1838 | } |
---|
1839 | } |
---|
1840 | |
---|
1841 | void |
---|
1842 | exit_signal_handler(TCR *tcr, int old_valence) |
---|
1843 | { |
---|
1844 | sigset_t mask; |
---|
1845 | sigfillset(&mask); |
---|
1846 | |
---|
1847 | pthread_sigmask(SIG_SETMASK,&mask, NULL); |
---|
1848 | tcr->valence = old_valence; |
---|
1849 | tcr->pending_exception_context = NULL; |
---|
1850 | } |
---|
1851 | |
---|
1852 | |
---|
1853 | void |
---|
1854 | signal_handler(int signum, siginfo_t *info, ExceptionInformationPowerPC *context, TCR *tcr) |
---|
1855 | { |
---|
1856 | xframe_list xframe_link; |
---|
1857 | int old_valence; |
---|
1858 | #ifdef LINUX |
---|
1859 | |
---|
1860 | tcr = (TCR *) xpGPR(context,rcontext); |
---|
1861 | |
---|
1862 | if (tcr == NULL) { |
---|
1863 | tcr = get_tcr(false); |
---|
1864 | } else { |
---|
1865 | current_r2 = tcr->native_thread_info; |
---|
1866 | } |
---|
1867 | |
---|
1868 | /* The signal handler's entered with all signals (notably the |
---|
1869 | thread_suspend signal) blocked. Don't allow any other signals |
---|
1870 | (notably the thread_suspend signal) to preempt us until we've |
---|
1871 | set the TCR's xframe slot to include the current exception |
---|
1872 | context. |
---|
1873 | */ |
---|
1874 | |
---|
1875 | old_valence = prepare_to_wait_for_exception_lock(tcr, context); |
---|
1876 | #endif |
---|
1877 | |
---|
1878 | wait_for_exception_lock_in_handler(tcr, context, &xframe_link); |
---|
1879 | if ((noErr != PMCL_exception_handler(signum, context, tcr, info))) { |
---|
1880 | char msg[512]; |
---|
1881 | snprintf(msg, sizeof(msg), "Unhandled exception %d at 0x%08x, context->regs at #x%08x", signum, xpPC(context), (int)xpGPRvector(context)); |
---|
1882 | lisp_Debugger(context, signum, msg); |
---|
1883 | } |
---|
1884 | unlock_exception_lock_in_handler(tcr); |
---|
1885 | |
---|
1886 | /* This thread now looks like a thread that was suspended while |
---|
1887 | executing lisp code. If some other thread gets the exception |
---|
1888 | lock and GCs, the context (this thread's suspend_context) will |
---|
1889 | be updated. (That's only of concern if it happens before we |
---|
1890 | can return to the kernel/to the Mach exception handler). |
---|
1891 | */ |
---|
1892 | #ifdef LINUX |
---|
1893 | exit_signal_handler(tcr, old_valence); |
---|
1894 | raise_pending_interrupt(tcr); |
---|
1895 | #endif |
---|
1896 | } |
---|
1897 | |
---|
1898 | /* |
---|
1899 | If it looks like we're in the middle of an atomic operation, make |
---|
1900 | it seem as if that operation is either complete or hasn't started |
---|
1901 | yet. |
---|
1902 | |
---|
1903 | The cases handled include: |
---|
1904 | |
---|
1905 | a) storing into a newly-allocated lisp frame on the stack. |
---|
1906 | b) marking a newly-allocated TSP frame as containing "raw" data. |
---|
1907 | c) consing: the GC has its own ideas about how this should be |
---|
1908 | handled, but other callers would be best advised to back |
---|
1909 | up or move forward, according to whether we're in the middle |
---|
1910 | of allocating a cons cell or allocating a uvector. |
---|
1911 | d) a STMW to the vsp |
---|
1912 | */ |
---|
1913 | void |
---|
1914 | pc_luser_xp(ExceptionInformationPowerPC *xp, TCR *tcr) |
---|
1915 | { |
---|
1916 | pc program_counter = xpPC(xp); |
---|
1917 | opcode instr = *program_counter; |
---|
1918 | lisp_frame *frame = (lisp_frame *)ptr_from_lispobj(xpGPR(xp,sp)); |
---|
1919 | LispObj cur_allocptr = xpGPR(xp, allocptr); |
---|
1920 | int allocptr_tag = fulltag_of(cur_allocptr); |
---|
1921 | |
---|
1922 | |
---|
1923 | if (instr == 0x918c0004) { /* stw tsp,tsp_frame.type(tsp) */ |
---|
1924 | LispObj tsp_val = xpGPR(xp,tsp); |
---|
1925 | |
---|
1926 | ((LispObj *)ptr_from_lispobj(tsp_val))[1] = tsp_val; |
---|
1927 | adjust_exception_pc(xp, 4); |
---|
1928 | return; |
---|
1929 | } |
---|
1930 | |
---|
1931 | if (frame->backlink == (frame+1)) { |
---|
1932 | if ((major_opcode_p(instr, major_opcode_STW)) && |
---|
1933 | (RA_field(instr) == sp) && |
---|
1934 | /* There are a few places in the runtime that store into |
---|
1935 | a previously-allocated frame atop the stack when |
---|
1936 | throwing values around. We only care about the case |
---|
1937 | where the frame was newly allocated, in which case |
---|
1938 | there must have been a CREATE_LISP_FRAME_INSTRUCTION |
---|
1939 | a few instructions before the current program counter. |
---|
1940 | (The whole point here is that a newly allocated frame |
---|
1941 | might contain random values that we don't want the |
---|
1942 | GC to see; a previously allocated frame should already |
---|
1943 | be completely initialized.) |
---|
1944 | */ |
---|
1945 | ((program_counter[-1] == CREATE_LISP_FRAME_INSTRUCTION) || |
---|
1946 | (program_counter[-2] == CREATE_LISP_FRAME_INSTRUCTION) || |
---|
1947 | (program_counter[-3] == CREATE_LISP_FRAME_INSTRUCTION))) { |
---|
1948 | int disp = D_field(instr); |
---|
1949 | |
---|
1950 | if (disp < 16) { |
---|
1951 | frame->savevsp = 0; |
---|
1952 | if (disp < 12) { |
---|
1953 | frame->savelr = 0; |
---|
1954 | if (disp == 4) { |
---|
1955 | frame->savefn = 0; |
---|
1956 | } |
---|
1957 | } |
---|
1958 | } |
---|
1959 | return; |
---|
1960 | } |
---|
1961 | } |
---|
1962 | |
---|
1963 | if (allocptr_tag != tag_fixnum) { |
---|
1964 | int disp = allocptr_displacement(xp); |
---|
1965 | |
---|
1966 | if (disp) { |
---|
1967 | /* We're "at" the alloc_trap. If this is happening for the |
---|
1968 | GC's benefit (the GC has just suspended the thread that |
---|
1969 | owns xp), set allocbase to VOID_ALLOCPTR and pretend that |
---|
1970 | allocptr was just decremented (by disp) from there; leave |
---|
1971 | the PC pointing to the alloc_trap. If this is happening |
---|
1972 | in response to a PROCESS-INTERRUPT request, we can't have |
---|
1973 | entered the trap handler yet: back out of the previous |
---|
1974 | instruction (which subtracted "disp" from allocptr) and |
---|
1975 | arrange to execute it again after the interrupt. |
---|
1976 | */ |
---|
1977 | if (tcr) { |
---|
1978 | update_bytes_allocated(tcr, (void *) ptr_from_lispobj(cur_allocptr + disp)); |
---|
1979 | xpGPR(xp, allocbase) = VOID_ALLOCPTR; |
---|
1980 | xpGPR(xp, allocptr) = VOID_ALLOCPTR - disp; |
---|
1981 | } else { |
---|
1982 | xpGPR(xp, allocptr) = cur_allocptr + disp; |
---|
1983 | xpPC(xp) -=1; |
---|
1984 | } |
---|
1985 | } else { |
---|
1986 | /* If we're already past the alloc_trap, finish allocating |
---|
1987 | the object. */ |
---|
1988 | if (allocptr_tag == fulltag_cons) { |
---|
1989 | finish_allocating_cons(xp); |
---|
1990 | } else { |
---|
1991 | if (allocptr_tag == fulltag_misc) { |
---|
1992 | finish_allocating_uvector(xp); |
---|
1993 | } else { |
---|
1994 | Bug(xp, "what's being allocated here ?"); |
---|
1995 | } |
---|
1996 | } |
---|
1997 | } |
---|
1998 | } |
---|
1999 | |
---|
2000 | if ((major_opcode_p(instr, 47)) && /* 47 = stmw */ |
---|
2001 | (RA_field(instr) == vsp)) { |
---|
2002 | int r; |
---|
2003 | LispObj *vspptr = ptr_from_lispobj(xpGPR(xp,vsp)); |
---|
2004 | |
---|
2005 | for (r = RS_field(instr); r <= 31; r++) { |
---|
2006 | *vspptr++ = xpGPR(xp,r); |
---|
2007 | } |
---|
2008 | adjust_exception_pc(xp, 4); |
---|
2009 | } |
---|
2010 | } |
---|
2011 | |
---|
2012 | void |
---|
2013 | interrupt_handler (int signum, siginfo_t *info, ExceptionInformation *context) |
---|
2014 | { |
---|
2015 | TCR *tcr = get_interrupt_tcr(false); |
---|
2016 | if (tcr) { |
---|
2017 | if (tcr->interrupt_level < 0) { |
---|
2018 | tcr->interrupt_pending = 1 << fixnumshift; |
---|
2019 | } else { |
---|
2020 | LispObj cmain = nrs_CMAIN.vcell; |
---|
2021 | |
---|
2022 | if ((fulltag_of(cmain) == fulltag_misc) && |
---|
2023 | (header_subtag(header_of(cmain)) == subtag_macptr)) { |
---|
2024 | /* |
---|
2025 | This thread can (allegedly) take an interrupt now. |
---|
2026 | It's tricky to do that if we're executing |
---|
2027 | foreign code (especially Linuxthreads code, much |
---|
2028 | of which isn't reentrant.) |
---|
2029 | */ |
---|
2030 | if (tcr->valence != TCR_STATE_LISP) { |
---|
2031 | tcr->interrupt_level = (1 << fixnumshift); |
---|
2032 | } else { |
---|
2033 | xframe_list xframe_link; |
---|
2034 | int old_valence; |
---|
2035 | |
---|
2036 | pc_luser_xp(context, NULL); |
---|
2037 | old_valence = prepare_to_wait_for_exception_lock(tcr, context); |
---|
2038 | wait_for_exception_lock_in_handler(tcr, context, &xframe_link); |
---|
2039 | PMCL_exception_handler(signum, context, tcr, info); |
---|
2040 | unlock_exception_lock_in_handler(tcr); |
---|
2041 | exit_signal_handler(tcr, old_valence); |
---|
2042 | } |
---|
2043 | } |
---|
2044 | } |
---|
2045 | } |
---|
2046 | #ifdef DARWIN |
---|
2047 | DarwinSigReturn(context); |
---|
2048 | #endif |
---|
2049 | } |
---|
2050 | |
---|
2051 | |
---|
2052 | |
---|
2053 | void |
---|
2054 | install_signal_handler(int signo, __sighandler_t handler) |
---|
2055 | { |
---|
2056 | struct sigaction sa; |
---|
2057 | |
---|
2058 | sa.sa_sigaction = (void *)handler; |
---|
2059 | sigfillset(&sa.sa_mask); |
---|
2060 | sa.sa_flags = SA_RESTART | SA_SIGINFO; |
---|
2061 | |
---|
2062 | sigaction(signo, &sa, NULL); |
---|
2063 | } |
---|
2064 | |
---|
2065 | void |
---|
2066 | install_pmcl_exception_handlers() |
---|
2067 | { |
---|
2068 | #ifndef DARWIN |
---|
2069 | extern int no_sigtrap; |
---|
2070 | install_signal_handler(SIGILL, (__sighandler_t)signal_handler); |
---|
2071 | if (no_sigtrap != 1) { |
---|
2072 | install_signal_handler(SIGTRAP, (__sighandler_t)signal_handler); |
---|
2073 | } |
---|
2074 | install_signal_handler(SIGBUS, (__sighandler_t)signal_handler); |
---|
2075 | install_signal_handler(SIGSEGV, (__sighandler_t)signal_handler); |
---|
2076 | install_signal_handler(SIGFPE, (__sighandler_t)signal_handler); |
---|
2077 | #endif |
---|
2078 | install_signal_handler(SIGNAL_FOR_PROCESS_INTERRUPT, |
---|
2079 | (__sighandler_t)interrupt_handler); |
---|
2080 | signal(SIGPIPE, SIG_IGN); |
---|
2081 | } |
---|
2082 | |
---|
2083 | |
---|
2084 | void |
---|
2085 | unprotect_all_areas() |
---|
2086 | { |
---|
2087 | protected_area_ptr p; |
---|
2088 | |
---|
2089 | for(p = AllProtectedAreas, AllProtectedAreas = NULL; p; p = p->next) { |
---|
2090 | unprotect_area(p); |
---|
2091 | } |
---|
2092 | } |
---|
2093 | |
---|
2094 | |
---|
2095 | |
---|
2096 | |
---|
2097 | void |
---|
2098 | exception_init() |
---|
2099 | { |
---|
2100 | install_pmcl_exception_handlers(); |
---|
2101 | } |
---|
2102 | |
---|
2103 | |
---|
2104 | void |
---|
2105 | Bug(ExceptionInformation *xp, const char *format, ...) |
---|
2106 | { |
---|
2107 | va_list args; |
---|
2108 | char s[512]; |
---|
2109 | |
---|
2110 | va_start(args, format); |
---|
2111 | vsnprintf(s, sizeof(s),format, args); |
---|
2112 | va_end(args); |
---|
2113 | lisp_Debugger(NULL, debug_entry_bug, s); |
---|
2114 | |
---|
2115 | } |
---|
2116 | |
---|
2117 | void |
---|
2118 | lisp_bug(char *string) |
---|
2119 | { |
---|
2120 | Bug(NULL, "Bug in MCL-PPC system code:\n%s", string); |
---|
2121 | } |
---|
2122 | |
---|
2123 | |
---|
2124 | |
---|
2125 | #ifdef DARWIN |
---|
2126 | |
---|
2127 | lock_set_t mach_exception_lock_set; |
---|
2128 | |
---|
2129 | |
---|
2130 | #define LISP_EXCEPTIONS_HANDLED_MASK \ |
---|
2131 | (EXC_MASK_SOFTWARE | EXC_MASK_BAD_ACCESS | EXC_MASK_BAD_INSTRUCTION | EXC_MASK_ARITHMETIC) |
---|
2132 | |
---|
2133 | /* (logcount LISP_EXCEPTIONS_HANDLED_MASK) */ |
---|
2134 | #define NUM_LISP_EXCEPTIONS_HANDLED 4 |
---|
2135 | |
---|
2136 | typedef struct { |
---|
2137 | int foreign_exception_port_count; |
---|
2138 | exception_mask_t masks[NUM_LISP_EXCEPTIONS_HANDLED]; |
---|
2139 | mach_port_t ports[NUM_LISP_EXCEPTIONS_HANDLED]; |
---|
2140 | exception_behavior_t behaviors[NUM_LISP_EXCEPTIONS_HANDLED]; |
---|
2141 | thread_state_flavor_t flavors[NUM_LISP_EXCEPTIONS_HANDLED]; |
---|
2142 | } MACH_foreign_exception_state; |
---|
2143 | |
---|
2144 | |
---|
2145 | |
---|
2146 | |
---|
2147 | /* |
---|
2148 | Mach's exception mechanism works a little better than its signal |
---|
2149 | mechanism (and, not incidentally, it gets along with GDB a lot |
---|
2150 | better. |
---|
2151 | |
---|
2152 | Initially, we install an exception handler to handle each native |
---|
2153 | thread's exceptions. This process involves creating a distinguished |
---|
2154 | thread which listens for kernel exception messages on a set of |
---|
2155 | 0 or more thread exception ports. As threads are created, they're |
---|
2156 | added to that port set; a thread's exception port is destroyed |
---|
2157 | (and therefore removed from the port set) when the thread exits. |
---|
2158 | |
---|
2159 | A few exceptions can be handled directly in the handler thread; |
---|
2160 | others require that we resume the user thread (and that the |
---|
2161 | exception thread resumes listening for exceptions.) The user |
---|
2162 | thread might eventually want to return to the original context |
---|
2163 | (possibly modified somewhat.) |
---|
2164 | |
---|
2165 | As it turns out, the simplest way to force the faulting user |
---|
2166 | thread to handle its own exceptions is to do pretty much what |
---|
2167 | signal() does: the exception handlng thread sets up a sigcontext |
---|
2168 | on the user thread's stack and forces the user thread to resume |
---|
2169 | execution as if a signal handler had been called with that |
---|
2170 | context as an argument. We can use a distinguished UUO at a |
---|
2171 | distinguished address to do something like sigreturn(); that'll |
---|
2172 | have the effect of resuming the user thread's execution in |
---|
2173 | the (pseudo-) signal context. |
---|
2174 | |
---|
2175 | Since: |
---|
2176 | a) we have miles of code in C and in Lisp that knows how to |
---|
2177 | deal with Linux sigcontexts |
---|
2178 | b) Linux sigcontexts contain a little more useful information |
---|
2179 | (the DAR, DSISR, etc.) than their Darwin counterparts |
---|
2180 | c) we have to create a sigcontext ourselves when calling out |
---|
2181 | to the user thread: we aren't really generating a signal, just |
---|
2182 | leveraging existing signal-handling code. |
---|
2183 | |
---|
2184 | we create a Linux sigcontext struct. |
---|
2185 | |
---|
2186 | Simple ? Hopefully from the outside it is ... |
---|
2187 | |
---|
2188 | We want the process of passing a thread's own context to it to |
---|
2189 | appear to be atomic: in particular, we don't want the GC to suspend |
---|
2190 | a thread that's had an exception but has not yet had its user-level |
---|
2191 | exception handler called, and we don't want the thread's exception |
---|
2192 | context to be modified by a GC while the Mach handler thread is |
---|
2193 | copying it around. On Linux (and on Jaguar), we avoid this issue |
---|
2194 | because (a) the kernel sets up the user-level signal handler and |
---|
2195 | (b) the signal handler blocks signals (including the signal used |
---|
2196 | by the GC to suspend threads) until tcr->xframe is set up. |
---|
2197 | |
---|
2198 | The GC and the Mach server thread therefore contend for the lock |
---|
2199 | "mach_exception_lock_set[0]". The Mach server thread holds the lock |
---|
2200 | when copying exception information between the kernel and the |
---|
2201 | user thread; the GC holds this lock during most of its execution |
---|
2202 | (delaying exception processing until it can be done without |
---|
2203 | GC interference.) |
---|
2204 | |
---|
2205 | */ |
---|
2206 | |
---|
2207 | #define C_REDZONE_LEN 224 |
---|
2208 | #define C_STK_ALIGN 16 |
---|
2209 | #define C_PARAMSAVE_LEN 64 |
---|
2210 | #define C_LINKAGE_LEN 48 |
---|
2211 | #define TRUNC_DOWN(a,b,c) (((((unsigned)a)-(b))/(c)) * (c)) |
---|
2212 | #include <mach/mach.h> |
---|
2213 | #include <mach/mach_error.h> |
---|
2214 | #include <mach/machine/thread_state.h> |
---|
2215 | #include <mach/machine/thread_status.h> |
---|
2216 | |
---|
2217 | void |
---|
2218 | fatal_mach_error(char *format, ...); |
---|
2219 | |
---|
2220 | #define MACH_CHECK_ERROR(context,x) if (x != KERN_SUCCESS) {fatal_mach_error("Mach error while %s : ~d", context, x);} |
---|
2221 | |
---|
2222 | |
---|
2223 | void |
---|
2224 | restore_mach_thread_state(mach_port_t thread, ExceptionInformation *lss) |
---|
2225 | { |
---|
2226 | int i, j; |
---|
2227 | #ifdef PPC64 |
---|
2228 | struct mcontext64 *mc = UC_MCONTEXT(lss); |
---|
2229 | #else |
---|
2230 | struct mcontext * mc = UC_MCONTEXT(lss); |
---|
2231 | #endif |
---|
2232 | |
---|
2233 | /* Set the thread's FP state from the lss */ |
---|
2234 | thread_set_state(thread, |
---|
2235 | PPC_FLOAT_STATE, |
---|
2236 | (thread_state_t)&(mc->fs), |
---|
2237 | PPC_FLOAT_STATE_COUNT); |
---|
2238 | |
---|
2239 | /* The thread'll be as good as new ... */ |
---|
2240 | #ifdef PPC64 |
---|
2241 | thread_set_state(thread, |
---|
2242 | PPC_THREAD_STATE64, |
---|
2243 | (thread_state_t)&(mc->ss), |
---|
2244 | PPC_THREAD_STATE64_COUNT); |
---|
2245 | #else |
---|
2246 | thread_set_state(thread, |
---|
2247 | MACHINE_THREAD_STATE, |
---|
2248 | (thread_state_t)&(mc->ss), |
---|
2249 | MACHINE_THREAD_STATE_COUNT); |
---|
2250 | #endif |
---|
2251 | } |
---|
2252 | |
---|
2253 | /* This code runs in the exception handling thread, in response |
---|
2254 | to an attempt to execute the UU0 at "pseudo_sigreturn" (e.g., |
---|
2255 | in response to a call to pseudo_sigreturn() from the specified |
---|
2256 | user thread. |
---|
2257 | Find that context (the user thread's R3 points to it), then |
---|
2258 | use that context to set the user thread's state. When this |
---|
2259 | function's caller returns, the Mach kernel will resume the |
---|
2260 | user thread. |
---|
2261 | */ |
---|
2262 | |
---|
2263 | kern_return_t |
---|
2264 | do_pseudo_sigreturn(mach_port_t thread, TCR *tcr) |
---|
2265 | { |
---|
2266 | ExceptionInformation *xp; |
---|
2267 | |
---|
2268 | lock_acquire(mach_exception_lock_set, 0); |
---|
2269 | xp = tcr->pending_exception_context; |
---|
2270 | tcr->pending_exception_context = NULL; |
---|
2271 | tcr->valence = TCR_STATE_LISP; |
---|
2272 | restore_mach_thread_state(thread, xp); |
---|
2273 | raise_pending_interrupt(tcr); |
---|
2274 | lock_release(mach_exception_lock_set, 0); |
---|
2275 | return KERN_SUCCESS; |
---|
2276 | |
---|
2277 | } |
---|
2278 | |
---|
2279 | ExceptionInformation * |
---|
2280 | create_thread_context_frame(mach_port_t thread, |
---|
2281 | unsigned *new_stack_top) |
---|
2282 | { |
---|
2283 | #ifdef PPC64 |
---|
2284 | ppc_thread_state64_t ts; |
---|
2285 | #else |
---|
2286 | ppc_thread_state_t ts; |
---|
2287 | #endif |
---|
2288 | mach_msg_type_number_t thread_state_count; |
---|
2289 | kern_return_t result; |
---|
2290 | int i,j; |
---|
2291 | ExceptionInformation *lss; |
---|
2292 | #ifdef PPC64 |
---|
2293 | struct mcontext64 *mc; |
---|
2294 | #else |
---|
2295 | struct mcontext *mc; |
---|
2296 | #endif |
---|
2297 | natural stackp, backlink; |
---|
2298 | |
---|
2299 | #ifdef PPC64 |
---|
2300 | thread_state_count = PPC_THREAD_STATE64_COUNT; |
---|
2301 | thread_get_state(thread, |
---|
2302 | PPC_THREAD_STATE64, |
---|
2303 | (thread_state_t)&ts, |
---|
2304 | &thread_state_count); |
---|
2305 | #else |
---|
2306 | thread_state_count = MACHINE_THREAD_STATE_COUNT; |
---|
2307 | thread_get_state(thread, |
---|
2308 | MACHINE_THREAD_STATE, /* GPRs, some SPRs */ |
---|
2309 | (thread_state_t)&ts, |
---|
2310 | &thread_state_count); |
---|
2311 | #endif |
---|
2312 | |
---|
2313 | stackp = ts.r1; |
---|
2314 | backlink = stackp; |
---|
2315 | stackp = TRUNC_DOWN(stackp, C_REDZONE_LEN, C_STK_ALIGN); |
---|
2316 | stackp -= sizeof(*lss); |
---|
2317 | lss = (ExceptionInformation *) ptr_from_lispobj(stackp); |
---|
2318 | |
---|
2319 | stackp = TRUNC_DOWN(stackp, sizeof(*mc), C_STK_ALIGN); |
---|
2320 | #ifdef PPC64 |
---|
2321 | mc = (struct mcontext64 *) ptr_from_lispobj(stackp); |
---|
2322 | #else |
---|
2323 | mc = (struct mcontext *) ptr_from_lispobj(stackp); |
---|
2324 | #endif |
---|
2325 | bcopy(&ts,&(mc->ss),sizeof(ts)); |
---|
2326 | |
---|
2327 | thread_state_count = PPC_FLOAT_STATE_COUNT; |
---|
2328 | thread_get_state(thread, |
---|
2329 | PPC_FLOAT_STATE, |
---|
2330 | (thread_state_t)&(mc->fs), |
---|
2331 | &thread_state_count); |
---|
2332 | |
---|
2333 | |
---|
2334 | thread_state_count = PPC_EXCEPTION_STATE_COUNT; |
---|
2335 | thread_get_state(thread, |
---|
2336 | PPC_EXCEPTION_STATE, |
---|
2337 | (thread_state_t)&(mc->es), |
---|
2338 | &thread_state_count); |
---|
2339 | |
---|
2340 | |
---|
2341 | UC_MCONTEXT(lss) = mc; |
---|
2342 | stackp = TRUNC_DOWN(stackp, C_PARAMSAVE_LEN, C_STK_ALIGN); |
---|
2343 | stackp -= C_LINKAGE_LEN; |
---|
2344 | *(natural *)ptr_from_lispobj(stackp) = backlink; |
---|
2345 | if (new_stack_top) { |
---|
2346 | *new_stack_top = stackp; |
---|
2347 | } |
---|
2348 | return lss; |
---|
2349 | } |
---|
2350 | |
---|
2351 | /* |
---|
2352 | This code sets up the user thread so that it executes a "pseudo-signal |
---|
2353 | handler" function when it resumes. Create a linux sigcontext struct |
---|
2354 | on the thread's stack and pass it as an argument to the pseudo-signal |
---|
2355 | handler. |
---|
2356 | |
---|
2357 | Things are set up so that the handler "returns to" pseudo_sigreturn(), |
---|
2358 | which will restore the thread's context. |
---|
2359 | |
---|
2360 | If the handler invokes code that throws (or otherwise never sigreturn()'s |
---|
2361 | to the context), that's fine. |
---|
2362 | |
---|
2363 | Actually, check that: throw (and variants) may need to be careful and |
---|
2364 | pop the tcr's xframe list until it's younger than any frame being |
---|
2365 | entered. |
---|
2366 | */ |
---|
2367 | |
---|
2368 | int |
---|
2369 | setup_signal_frame(mach_port_t thread, |
---|
2370 | void *handler_address, |
---|
2371 | int signum, |
---|
2372 | int code, |
---|
2373 | TCR *tcr) |
---|
2374 | { |
---|
2375 | ppc_thread_state_t ts; |
---|
2376 | ppc_exception_state_t xs; |
---|
2377 | mach_msg_type_number_t thread_state_count; |
---|
2378 | ExceptionInformation *lss; |
---|
2379 | int i, j; |
---|
2380 | kern_return_t result; |
---|
2381 | unsigned stackp; |
---|
2382 | |
---|
2383 | lock_acquire(mach_exception_lock_set, 0); |
---|
2384 | |
---|
2385 | lss = create_thread_context_frame(thread, &stackp); |
---|
2386 | lss->uc_onstack = 0; |
---|
2387 | lss->uc_sigmask = (sigset_t) 0; |
---|
2388 | tcr->pending_exception_context = lss; |
---|
2389 | tcr->suspend_total_on_exception_entry = |
---|
2390 | tcr->suspend_total; |
---|
2391 | tcr->valence = TCR_STATE_EXCEPTION_WAIT; |
---|
2392 | |
---|
2393 | |
---|
2394 | /* |
---|
2395 | It seems like we've created a sigcontext on the thread's |
---|
2396 | stack. Set things up so that we call the handler (with appropriate |
---|
2397 | args) when the thread's resumed. |
---|
2398 | */ |
---|
2399 | |
---|
2400 | ts.srr0 = (int) handler_address; |
---|
2401 | ts.srr1 = (int) xpMSR(lss) & ~MSR_FE0_FE1_MASK; |
---|
2402 | ts.r1 = stackp; |
---|
2403 | ts.r3 = signum; |
---|
2404 | ts.r4 = (int)lss; |
---|
2405 | ts.r5 = (int)tcr; |
---|
2406 | ts.lr = (int)pseudo_sigreturn; |
---|
2407 | |
---|
2408 | |
---|
2409 | thread_set_state(thread, |
---|
2410 | MACHINE_THREAD_STATE, |
---|
2411 | (thread_state_t)&ts, |
---|
2412 | MACHINE_THREAD_STATE_COUNT); |
---|
2413 | lock_release(mach_exception_lock_set, 0); |
---|
2414 | return 0; |
---|
2415 | } |
---|
2416 | |
---|
2417 | |
---|
2418 | void |
---|
2419 | pseudo_signal_handler(int signum, ExceptionInformation *context, TCR *tcr) |
---|
2420 | { |
---|
2421 | signal_handler(signum, NULL, context, tcr); |
---|
2422 | } |
---|
2423 | |
---|
2424 | |
---|
2425 | int |
---|
2426 | thread_set_fp_exceptions_enabled(mach_port_t thread, Boolean enabled) |
---|
2427 | { |
---|
2428 | ppc_thread_state_t ts; |
---|
2429 | mach_msg_type_number_t thread_state_count; |
---|
2430 | |
---|
2431 | lock_acquire(mach_exception_lock_set, 0); |
---|
2432 | thread_state_count = MACHINE_THREAD_STATE_COUNT; |
---|
2433 | thread_get_state(thread, |
---|
2434 | MACHINE_THREAD_STATE, /* GPRs, some SPRs */ |
---|
2435 | (thread_state_t)&ts, |
---|
2436 | &thread_state_count); |
---|
2437 | if (enabled) { |
---|
2438 | ts.srr1 |= MSR_FE0_FE1_MASK; |
---|
2439 | } else { |
---|
2440 | ts.srr1 &= ~MSR_FE0_FE1_MASK; |
---|
2441 | } |
---|
2442 | ts.srr0 += 4; |
---|
2443 | thread_set_state(thread, |
---|
2444 | MACHINE_THREAD_STATE, |
---|
2445 | (thread_state_t)&ts, |
---|
2446 | MACHINE_THREAD_STATE_COUNT); |
---|
2447 | |
---|
2448 | lock_release(mach_exception_lock_set, 0); |
---|
2449 | return 0; |
---|
2450 | } |
---|
2451 | |
---|
2452 | /* |
---|
2453 | This function runs in the exception handling thread. It's |
---|
2454 | called (by this precise name) from the library function "exc_server()" |
---|
2455 | when the thread's exception ports are set up. (exc_server() is called |
---|
2456 | via mach_msg_server(), which is a function that waits for and dispatches |
---|
2457 | on exception messages from the Mach kernel.) |
---|
2458 | |
---|
2459 | This checks to see if the exception was caused by a pseudo_sigreturn() |
---|
2460 | UUO; if so, it arranges for the thread to have its state restored |
---|
2461 | from the specified context. |
---|
2462 | |
---|
2463 | Otherwise, it tries to map the exception to a signal number and |
---|
2464 | arranges that the thread run a "pseudo signal handler" to handle |
---|
2465 | the exception. |
---|
2466 | |
---|
2467 | Some exceptions could and should be handled here directly. |
---|
2468 | */ |
---|
2469 | |
---|
2470 | kern_return_t |
---|
2471 | catch_exception_raise(mach_port_t exception_port, |
---|
2472 | mach_port_t thread, |
---|
2473 | mach_port_t task, |
---|
2474 | exception_type_t exception, |
---|
2475 | exception_data_t code_vector, |
---|
2476 | mach_msg_type_number_t code_count) |
---|
2477 | { |
---|
2478 | int signum = 0, code = *code_vector, code1; |
---|
2479 | |
---|
2480 | if ((exception == EXC_BAD_INSTRUCTION) && |
---|
2481 | (code_vector[0] == EXC_PPC_UNIPL_INST) && |
---|
2482 | (((code1 = code_vector[1]) == (int)pseudo_sigreturn) || |
---|
2483 | (code1 == (int)enable_fp_exceptions) || |
---|
2484 | (code1 == (int)disable_fp_exceptions))) { |
---|
2485 | if (code1 == (int)pseudo_sigreturn) { |
---|
2486 | return do_pseudo_sigreturn(thread, (TCR *) exception_port); |
---|
2487 | } |
---|
2488 | if (code1 == (int)enable_fp_exceptions) { |
---|
2489 | return thread_set_fp_exceptions_enabled(thread, true); |
---|
2490 | } |
---|
2491 | return thread_set_fp_exceptions_enabled(thread, false); |
---|
2492 | } |
---|
2493 | switch (exception) { |
---|
2494 | case EXC_BAD_ACCESS: |
---|
2495 | signum = SIGSEGV; |
---|
2496 | break; |
---|
2497 | |
---|
2498 | case EXC_BAD_INSTRUCTION: |
---|
2499 | signum = SIGILL; |
---|
2500 | break; |
---|
2501 | |
---|
2502 | case EXC_SOFTWARE: |
---|
2503 | if (code == EXC_PPC_TRAP) { |
---|
2504 | signum = SIGTRAP; |
---|
2505 | } |
---|
2506 | break; |
---|
2507 | |
---|
2508 | case EXC_ARITHMETIC: |
---|
2509 | signum = SIGFPE; |
---|
2510 | break; |
---|
2511 | |
---|
2512 | default: |
---|
2513 | break; |
---|
2514 | } |
---|
2515 | if (signum) { |
---|
2516 | return setup_signal_frame(thread, |
---|
2517 | (void *)pseudo_signal_handler, |
---|
2518 | signum, |
---|
2519 | code, |
---|
2520 | (TCR *) exception_port); |
---|
2521 | } |
---|
2522 | return 17; |
---|
2523 | } |
---|
2524 | |
---|
2525 | |
---|
2526 | /* |
---|
2527 | The initial function for an exception-handling thread. |
---|
2528 | */ |
---|
2529 | |
---|
2530 | void * |
---|
2531 | exception_handler_proc(void *arg) |
---|
2532 | { |
---|
2533 | extern boolean_t exc_server(); |
---|
2534 | mach_port_t p = (mach_port_t) arg; |
---|
2535 | |
---|
2536 | mach_msg_server(exc_server, 256, p, 0); |
---|
2537 | /* Should never return. */ |
---|
2538 | abort(); |
---|
2539 | } |
---|
2540 | |
---|
2541 | |
---|
2542 | mach_port_t |
---|
2543 | mach_exception_port_set() |
---|
2544 | { |
---|
2545 | static mach_port_t __exception_port_set = MACH_PORT_NULL; |
---|
2546 | kern_return_t kret; |
---|
2547 | if (__exception_port_set == MACH_PORT_NULL) { |
---|
2548 | lock_set_create(mach_task_self(), |
---|
2549 | &mach_exception_lock_set, |
---|
2550 | 1, |
---|
2551 | SYNC_POLICY_FIFO); |
---|
2552 | |
---|
2553 | kret = mach_port_allocate(mach_task_self(), |
---|
2554 | MACH_PORT_RIGHT_PORT_SET, |
---|
2555 | &__exception_port_set); |
---|
2556 | MACH_CHECK_ERROR("allocating thread exception_ports",kret); |
---|
2557 | create_system_thread(0, |
---|
2558 | NULL, |
---|
2559 | exception_handler_proc, |
---|
2560 | (void *)__exception_port_set); |
---|
2561 | } |
---|
2562 | return __exception_port_set; |
---|
2563 | } |
---|
2564 | |
---|
2565 | /* |
---|
2566 | Setup a new thread to handle those exceptions specified by |
---|
2567 | the mask "which". This involves creating a special Mach |
---|
2568 | message port, telling the Mach kernel to send exception |
---|
2569 | messages for the calling thread to that port, and setting |
---|
2570 | up a handler thread which listens for and responds to |
---|
2571 | those messages. |
---|
2572 | |
---|
2573 | */ |
---|
2574 | |
---|
2575 | /* |
---|
2576 | Establish the lisp thread's TCR as its exception port, and determine |
---|
2577 | whether any other ports have been established by foreign code for |
---|
2578 | exceptions that lisp cares about. |
---|
2579 | |
---|
2580 | If this happens at all, it should happen on return from foreign |
---|
2581 | code and on entry to lisp code via a callback. |
---|
2582 | |
---|
2583 | This is a lot of trouble (and overhead) to support Java, or other |
---|
2584 | embeddable systems that clobber their caller's thread exception ports. |
---|
2585 | |
---|
2586 | */ |
---|
2587 | kern_return_t |
---|
2588 | tcr_establish_exception_port(TCR *tcr, mach_port_t thread) |
---|
2589 | { |
---|
2590 | kern_return_t kret; |
---|
2591 | MACH_foreign_exception_state *fxs = (MACH_foreign_exception_state *)tcr->native_thread_info; |
---|
2592 | int i, n = NUM_LISP_EXCEPTIONS_HANDLED; |
---|
2593 | mach_port_t lisp_port = (mach_port_t)tcr, foreign_port; |
---|
2594 | exception_mask_t mask = 0; |
---|
2595 | |
---|
2596 | kret = thread_swap_exception_ports(thread, |
---|
2597 | LISP_EXCEPTIONS_HANDLED_MASK, |
---|
2598 | lisp_port, |
---|
2599 | EXCEPTION_DEFAULT, |
---|
2600 | THREAD_STATE_NONE, |
---|
2601 | fxs->masks, |
---|
2602 | &n, |
---|
2603 | fxs->ports, |
---|
2604 | fxs->behaviors, |
---|
2605 | fxs->flavors); |
---|
2606 | if (kret == KERN_SUCCESS) { |
---|
2607 | fxs->foreign_exception_port_count = n; |
---|
2608 | for (i = 0; i < n; i ++) { |
---|
2609 | foreign_port = fxs->ports[i]; |
---|
2610 | |
---|
2611 | if ((foreign_port != lisp_port) && |
---|
2612 | (foreign_port != MACH_PORT_NULL)) { |
---|
2613 | mask |= fxs->masks[i]; |
---|
2614 | } |
---|
2615 | } |
---|
2616 | tcr->foreign_exception_status = (int) mask; |
---|
2617 | } |
---|
2618 | return kret; |
---|
2619 | } |
---|
2620 | |
---|
2621 | kern_return_t |
---|
2622 | tcr_establish_lisp_exception_port(TCR *tcr) |
---|
2623 | { |
---|
2624 | return tcr_establish_exception_port(tcr, (mach_port_t)tcr->native_thread_id); |
---|
2625 | } |
---|
2626 | |
---|
2627 | /* |
---|
2628 | Do this when calling out to or returning from foreign code, if |
---|
2629 | any conflicting foreign exception ports were established when we |
---|
2630 | last entered lisp code. |
---|
2631 | */ |
---|
2632 | kern_return_t |
---|
2633 | restore_foreign_exception_ports(TCR *tcr) |
---|
2634 | { |
---|
2635 | exception_mask_t m = (exception_mask_t) tcr->foreign_exception_status; |
---|
2636 | |
---|
2637 | if (m) { |
---|
2638 | MACH_foreign_exception_state *fxs = |
---|
2639 | (MACH_foreign_exception_state *) tcr->native_thread_info; |
---|
2640 | int i, n = fxs->foreign_exception_port_count; |
---|
2641 | exception_mask_t tm; |
---|
2642 | |
---|
2643 | for (i = 0; i < n; i++) { |
---|
2644 | if ((tm = fxs->masks[i]) & m) { |
---|
2645 | thread_set_exception_ports((mach_port_t)tcr->native_thread_id, |
---|
2646 | tm, |
---|
2647 | fxs->ports[i], |
---|
2648 | fxs->behaviors[i], |
---|
2649 | fxs->flavors[i]); |
---|
2650 | } |
---|
2651 | } |
---|
2652 | } |
---|
2653 | } |
---|
2654 | |
---|
2655 | |
---|
2656 | kern_return_t |
---|
2657 | setup_mach_exception_handling(TCR *tcr) |
---|
2658 | { |
---|
2659 | mach_port_t |
---|
2660 | thread_exception_port = (mach_port_t)tcr, |
---|
2661 | target_thread = pthread_mach_thread_np((pthread_t)ptr_from_lispobj(tcr->osid)), |
---|
2662 | task_self = mach_task_self(); |
---|
2663 | kern_return_t kret; |
---|
2664 | |
---|
2665 | kret = mach_port_allocate_name(task_self, |
---|
2666 | MACH_PORT_RIGHT_RECEIVE, |
---|
2667 | thread_exception_port); |
---|
2668 | |
---|
2669 | MACH_CHECK_ERROR("naming exception_port",kret); |
---|
2670 | |
---|
2671 | kret = mach_port_insert_right(task_self, |
---|
2672 | thread_exception_port, |
---|
2673 | thread_exception_port, |
---|
2674 | MACH_MSG_TYPE_MAKE_SEND); |
---|
2675 | MACH_CHECK_ERROR("adding send right to exception_port",kret); |
---|
2676 | |
---|
2677 | kret = tcr_establish_exception_port(tcr, (mach_port_t) tcr->native_thread_id); |
---|
2678 | if (kret == KERN_SUCCESS) { |
---|
2679 | mach_port_t exception_port_set = mach_exception_port_set(); |
---|
2680 | |
---|
2681 | kret = mach_port_move_member(task_self, |
---|
2682 | thread_exception_port, |
---|
2683 | exception_port_set); |
---|
2684 | } |
---|
2685 | return kret; |
---|
2686 | } |
---|
2687 | |
---|
2688 | void |
---|
2689 | darwin_exception_init(TCR *tcr) |
---|
2690 | { |
---|
2691 | void tcr_monitor_exception_handling(TCR*, Boolean); |
---|
2692 | kern_return_t kret; |
---|
2693 | MACH_foreign_exception_state *fxs = |
---|
2694 | calloc(1, sizeof(MACH_foreign_exception_state)); |
---|
2695 | |
---|
2696 | tcr->native_thread_info = (void *) fxs; |
---|
2697 | |
---|
2698 | if ((kret = setup_mach_exception_handling(tcr)) |
---|
2699 | != KERN_SUCCESS) { |
---|
2700 | fprintf(stderr, "Couldn't setup exception handler - error = %d\n", kret); |
---|
2701 | terminate_lisp(); |
---|
2702 | } |
---|
2703 | lisp_global(LISP_EXIT_HOOK) = (LispObj) restore_foreign_exception_ports; |
---|
2704 | lisp_global(LISP_RETURN_HOOK) = (LispObj) tcr_establish_lisp_exception_port; |
---|
2705 | } |
---|
2706 | |
---|
2707 | /* |
---|
2708 | The tcr is the "name" of the corresponding thread's exception port. |
---|
2709 | Destroying the port should remove it from all port sets of which it's |
---|
2710 | a member (notably, the exception port set.) |
---|
2711 | */ |
---|
2712 | void |
---|
2713 | darwin_exception_cleanup(TCR *tcr) |
---|
2714 | { |
---|
2715 | void *fxs = tcr->native_thread_info; |
---|
2716 | |
---|
2717 | if (fxs) { |
---|
2718 | tcr->native_thread_info = NULL; |
---|
2719 | free(fxs); |
---|
2720 | } |
---|
2721 | mach_port_destroy(mach_task_self(),(mach_port_t)tcr); |
---|
2722 | } |
---|
2723 | |
---|
2724 | |
---|
2725 | /* |
---|
2726 | Only do this if pthread_kill indicated that the pthread isn't |
---|
2727 | listening to signals anymore, as can happen as soon as pthread_exit() |
---|
2728 | is called on Darwin. The thread could still call out to lisp as it |
---|
2729 | is exiting, so we need another way to suspend it in this case. |
---|
2730 | */ |
---|
2731 | Boolean |
---|
2732 | mach_suspend_tcr(TCR *tcr) |
---|
2733 | { |
---|
2734 | mach_port_t mach_thread = (mach_port_t) tcr->native_thread_id; |
---|
2735 | kern_return_t status = thread_suspend(mach_thread); |
---|
2736 | ExceptionInformation *lss; |
---|
2737 | |
---|
2738 | if (status != KERN_SUCCESS) { |
---|
2739 | return false; |
---|
2740 | } |
---|
2741 | lock_acquire(mach_exception_lock_set, 0); |
---|
2742 | thread_abort_safely(mach_thread); |
---|
2743 | lss = create_thread_context_frame(mach_thread, NULL); |
---|
2744 | lss->uc_onstack = 0; |
---|
2745 | lss->uc_sigmask = (sigset_t) 0; |
---|
2746 | tcr->suspend_context = lss; |
---|
2747 | tcr->suspend_total++; |
---|
2748 | lock_release(mach_exception_lock_set, 0); |
---|
2749 | return true; |
---|
2750 | } |
---|
2751 | |
---|
2752 | void |
---|
2753 | mach_resume_tcr(TCR *tcr) |
---|
2754 | { |
---|
2755 | ExceptionInformation *xp; |
---|
2756 | mach_port_t mach_thread = (mach_port_t)(tcr->native_thread_id); |
---|
2757 | |
---|
2758 | lock_acquire(mach_exception_lock_set, 0); |
---|
2759 | xp = tcr->suspend_context; |
---|
2760 | tcr->suspend_context = NULL; |
---|
2761 | restore_mach_thread_state(mach_thread, xp); |
---|
2762 | thread_resume(mach_thread); |
---|
2763 | lock_release(mach_exception_lock_set,0); |
---|
2764 | } |
---|
2765 | |
---|
2766 | void |
---|
2767 | fatal_mach_error(char *format, ...) |
---|
2768 | { |
---|
2769 | va_list args; |
---|
2770 | char s[512]; |
---|
2771 | |
---|
2772 | |
---|
2773 | va_start(args, format); |
---|
2774 | vsnprintf(s, sizeof(s),format, args); |
---|
2775 | va_end(args); |
---|
2776 | |
---|
2777 | Fatal("Mach error", s); |
---|
2778 | } |
---|
2779 | |
---|
2780 | #endif |
---|